Atualmente desenvolvem-se técnicas para a análise, identificação e o reconhecimento da fala. As mais eficientes mostram-se matematicamente complicadas, baseadas em análise estatísticas de dados, o que torna o sistema moroso, necessitando uma grande quantidade de dados para amostras. Este trabalho tem como objetivo apresentar a possibilidade do uso de Estruturas Neurais Artificiais Paraconsistentes no aprendizado e reconhecimento de sinais de fala, independentemente de análise estatística, ou número de amostras. A partir de um estudo piloto, identificou-se a necessidade de um aprofundamento no estudo dos Traços Formantes dos Fones. Com os Formantes dos Fones pode-se criar um sistema capaz de reconhecer sons produzidos em qualquer língua, pelas combinações da produção de sons através da emissão simultânea de um conjunto de Formantes. Como possível solução para a identificação dos Formantes dos Fones propõe-se neste trabalho a criação do conceito de Constelação Fônica, que consiste no reconhecimento de combinações de características matemáticas identificadas nos sinais sonoros de fala. Como uma forma de reconhecer estas Constelações, apresentam-se as Redes Neurais Artificiais Paraconsistentes, eficientes no reconhecimento de padrões por proximidade e com capacidade para tratamento de sinais contraditórios e paracompletos. Para a viabilização desta solução, criou-se um Programa de Computador (Sistema de Análise da Produção da Fala - SIAPF) capaz de promover os tratamentos necessários em um sinal falado, gerando assim a sua Constelação Fônica e sua respectiva Rede Neural Artificial Paraconsistente. A partir da Rede Neural Artificial Paraconsistente correspondente ao sinal em questão, pode-se estudá-lo de uma forma interpretativa, com menor acumulo de dados e tratamentos estatísticos do que com as ferramentas tradicionais. O SIAPF passa a ser mais uma ferramenta para análise de produção de fala, viabilizando a criação de novas formas de medidas quantitativas e normatizadas para os Formantes da Fala. / Currently, many diferent techniques are developing for the analysis identification and recognition of speech. The most efficient are shown mathematically complicated, based on analysis statistical of data, that actually makes systems very slow, creating the nessecity for a great amount of data for samples. The aim of this work is to present the possibility of the use of Paraconsistent Artificial Neural Network Structures, in the learnig and recognition of speech signals, independent of statistical analysis, or the number of samples. Starting from a pilot study, the need of a deep study of the Formants of Phones was identified. With the Formants of Phones, a system capable to recognize sounds produced in any language, through conbinations of the production of sounds and simultaneous emission of a group of Formants was created. A possible solution for the identification of Formants of Phones proposed in this work is the creation of Phonic Constellation concept, witch uses the recognition of combinations of identified mathematical characteristcs in the resoant signal of speech. As a form of recognizing these Constellation, this work present the Paraconsistent Artificial Neural Network, efficient in the recognition of patterns for proximity and with capacity to process contractory and paracomplet signals. To develop this solution a Computer Program (System of Analysis of the Production of Speech - SIAPF) capable to process the necessary calculations of a speech signal, generating its Phonic Constelattion and its respective Paraconsistent Artificial Neural Network was created. The subject signal can be studied in an interpretative way using the Paraconsistent Artificial Neural Network with a minimal accumulation of data and statistical calculations compared to traditional tools. The SIAPF is another new tool for analysis of speech production, creating new ways for quantitative and standard measures of Formants of Speech.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-03092007-131122 |
Date | 23 May 2007 |
Creators | João Carlos Almeida Prado |
Contributors | Claudia Regina Furquim de Andrade, Fabiola Staróbole Juste, Debora Maria Befi Lopes, Fernanda Chiarion Sassi, Haydée Fiszbein Wertzner |
Publisher | Universidade de São Paulo, Lingüística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds