I aimed to expand our understanding of community assembly and species co-existence by examining the implications of phylogenetic robustness on metrics describing phylogenetic community structure, as well as the phylogenetic patterns of co-occurring insect species in Churchill, MB. Using a variety of tree reconstruction methods, I found that cytochrome c oxidase subunit I (COI) was able to accurately estimate phylogenetic community structure metrics calculated from a multi-gene phylogeny when using more biologically realistic approaches. This included incorporating known phylogenetic relationships among families, and methods that employ best-fit models of molecular evolution (i.e. Bayesian inference). My second study examined the phylogenetic community patterns of freshwater insects. Overall communities were phylogenetically clustered suggesting environmental filtering, but community structure varied with time, habitat, taxonomic group, and water chemistry (particularly pH and turbidity). My thesis has suggested more robust techniques for calculating phylogenetic community structure, and described patterns of phylogenetic community composition in subarctic freshwater insects. / Natural Sciences and Engineering Research Council of Canada (NSERC), International Barcode of Life (iBOL), Genome Canada, Ontario Genomics Institute, Canadian Foundation for Innovation, Ontario Ministry of Research and Innovation, Churchill Northern Studies Centre, and Aboriginal Affairs and Northern Development Canada.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/4046 |
Date | 03 October 2012 |
Creators | Boyle, Elizabeth |
Contributors | Adamowicz, Sarah |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds