Return to search

Um modelo de exclusão assimétrico para o transporte de partículas mediado por motores moleculares / Asymetric exclusion model for intracellular transport driven by molecular motors

Motores moleculares são proteínas capazes de transportar objetos tais como vesículas, organelas e macromoléculas ao longo do citoesqueleto. Tratam-se de dispositivos bastante interessantes do ponto de vista físico, pois produzem trabalho em um ambiente extremamente ruidoso. Recentemente, diversos experimentos realizados in vivo têm revelado que objetos transportados por motores moleculares ao longo dos microtúbulos apresentam movimento bidirecional. Embora o movimento unidirecional dos motores envolvidos no transporte destes objetos seja bem caracterizado tanto experimentalmente quanto teoricamente, o movimento bidirecional das partículas transportadas pelos motores ainda não é bem entendido. Contudo, acredita-se que este fenômeno seja causado pela cooperatividade dos motores moleculares. Existem na literatura diversos trabalhos que visam descrever o comportamento coletivo de partículas locomovendo-se sobre uma rede unidimensional com interações de volume excluído e taxas de transição assimétricas. Estes modelos são conhecidos como TASEP (Totally asymmetric simple exclusion processes ) ou ASEP (Asymmetric simple exclusion processes ) e fazem parte de uma classe de modelos denominados sistemas difusivos dirigidos_. Embora alguns autores tenham utilizado modelos do tipo ASEP e TASEP para descrever o movimento dos motores moleculares exclusivamente [37], [38], não há ainda nesta visão microscópica, extensões deste modelo para incorporar as partículas cuja dinâmica depende exclusivamente da presença de motores. No presente trabalho propomos um modelo de exclusão, desenvolvido com o intuito de descrever o movimento conjunto de motores moleculares e das partículas carregadas pelos mesmos, as quais por simplicidade denominamos vesículas. Neste modelo, as vesículas não possuem dinâmica própria, ou seja, dependem da interação com os motores moleculares para se movimentarem. Procuramos soluções analíticas para este modelo para o 1 RESUMO 2 caso em que há apenas uma vesícula locomovendo-se sobre a rede. Utilizando o método das matrizes [32], calculamos a velocidade média da vesícula no estado estacionário e analisamos seu comportamento em situações de interesse. / Molecular motors are proteins that transport objects such as vesicles, organelles and macromolecules along the cytoskeletum of cells. For physics, they are very interesting devices because they are able to generate work in an extremely viscous environment. Recently, many in vivo experiments have revealed that objects transported by molecular motors move bidirectionally along microtubules. Although the unidirectional movement of such molecular motors is experimentally and theoretically well characterized, the movement of particles transported by these motors is not well understood yet. However, this fenomenum is believed to be caused by the cooperativity of molecular motors. A great number of works are found in literature, which were formulated to describe the collective behaviour of many particles moving in a one-dimensional lattice with a preferred hop rate and exclusion. These models are known as TASEP (Totally asymmetric simple exclusion processes) or ASEP (Asymmetric simple exclusion processes) and are part of a class of models named _driven di_usive systems_. Although some authors made use of ASEP and TASEP models to describe the movement of molecular motors [37], [38], there is not yet, in this microscopic point of view, extensions of these models capable of incorporate particles which the dynamics depends exclusivaly from the presence of motors. In this work we propose a exclusion model developed to describe the joint movement of molecular motors and particles, generally called vesicles. In this model, vesicles do not have a proper dynamics, that is, they on the interaction with molecular motors to move. We look after analytical solutions of this model when there is only one vesicle moving on the lattice. We use a matrix formulation [32] to obtain the mean velocity of the vesicle and analyse its behaviour in situations of interest.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-20052008-120606
Date25 March 2008
CreatorsSena, Elisa Thomé
ContributorsGoldman, Carla
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0025 seconds