The selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals by increasing accuracy of prediction and reducing generation interval, especially for difficult to measure traits, such as feed efficiency. Feed efficiency is the most important trait in animal production due to its impacts on cost of production and environmental factors. Many metrics measure the feed efficiency, such as ratio of gain to feed (FER), the ratio of feed to gain (FCR) and residual feed intake (RFI). Nevertheless, in ovine, no study with the aim of understand the genetic variants or the accuracy of genomic estimated breeding value (GEBV) for feed efficiency traits was published yet. Moreover, before to apply the genomic information, it is necessary to understand and characterized the population structure, for instance, by linkage disequilibrium (LD). Both genome-wide association studies (GWAS) and genomic selection (GS) leverage LD between marker and causal mutation. Based on the above considerations, the aim of this study was to map LD in ovine, characterized by Brazilian Santa Inês sheep; to search genetic variants for feed efficiency traits (FER, FCR and RFI) through GWAS; and to verify the accuracy of GEBV for RFI. In total, 396 samples (animals) of Longissimus dorsi muscle were collect. A high-density panel of SNP (Illumina High-Density Ovine SNP BeadChip®) comprising 54,241 SNPs was used to obtain the genotyping data. The phenotype data was comprised of 387 animals. The average LD between adjacent markers for two LD metrics, r² and |D\'|, were 0.166 and 0.617, respectively. The degree of LD estimated was lower than reported in other species and it was characterized by short haplotype blocks. Consequently, for genomic analyses, high-density panels of marker are recommended. Many markers were associated to feed efficiency traits in GWAS, mainly to RFI trait. Few candidate genes were reported in this study, highlighting NRF-1 (nuclear respiratory factor 1), which controls mitochondrial biosynthesis, the most important process responsible by a great fraction of the produced energy. Finally, we verified the accuracy of GEBV for RFI using few Bayesian regression models, and we found low accuracy, ranging from 0.033 (BayesB with π=0.9912) to 0.036 (BayesA), which might be explained by the low relationship among animals and small training population. / A seleção com base nos valores genéticos genômicos preditos pode aumentar substancialmente a taxa de ganho genético em animais por meio do aumento da acurácia de predição e redução do intervalo de gerações, especialmente para características de difícil e/ou onerosa mensuração, como eficiência alimentar. A eficiência alimentar é uma das características mais importantes na produção animal devido principalmente aos seus impactos econômicos e ambientais. Muitas métricas representam a eficiência alimentar, por exemplo: a relação do ganho de peso e consumo alimentar (EA), a proporção do consumo alimentar e ganho de peso (CA) e o consumo alimentar residual (CAR). Em ovinos, nenhum estudo com o objetivo de buscar variantes genéticas ou verificar a acurácia do valor genético genômico estimado para eficiência alimentar foi publicado. Adicionalmente, antes de aplicar a informação genômica, é necessário compreender e caracterizar a estrutura da população, como por meio do desequilíbrio de ligação (LD). O estudo de associação genômica (GWAS) e seleção genômica (GS) consideram o LD entre marcador e a mutação causal. Com base nas considerações acima, o objetivo deste estudo foi mapear o LD em ovinos, caracterizado pela raça ovina Santa Inês; localizar variantes genéticas para as características de eficiência alimentar (EA, CA e CAR) utilizando a abordagem GWAS; e verificar a acurácia da estimação dos valores genéticos genômico para o CAR. No total, foram coletadas 396 amostras (animais) do músculo Longissimus dorsi, para posterior genotipagem utilizando o painel de alta densidade (Illumina High-Density Ovine SNP BeadChip®), compreendendo 54.241 SNPs. O banco fenotípico é composto por 387 animais. O LD médio entre marcadores adjacentes para duas métricas de LD, r² e |D\'|, foram 0,166 e 0,617, respectivamente. O grau de LD estimado foi menor que o relatado em outras espécies e foi caracterizado por blocos de haplótipos curtos. Consequentemente, para as análises genômicas são recomendados painéis de marcadores de alta densidade. No GWAS, foram encontrados muitos marcadores associados aos fenótipos, em especial, à característica CAR. Alguns genes candidatos foram relatados neste estudo, destacando-se o NRF-1 (fator respiratório nuclear 1), que controla a biossíntese mitocondrial, o processo mais importante responsável por grande parte da produção de energia. Finalmente, verificamos a acurácia do valor genético genômico estimado para o CAR usando modelos de regressão Bayesiana, e encontramos baixos valores para acurácia (0,033 a 0,036) o que pode ser explicado pelo baixo grau de relacionamento entre os indivíduos e tamanho reduzido da população de treinamento.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-20032018-160145 |
Date | 28 September 2017 |
Creators | Amanda Botelho Alvarenga |
Contributors | Gerson Barreto Mourão, Luiz Lehmann Coutinho, Luís Fernando Batista Pinto, Weber Vilas Bôas Soares |
Publisher | Universidade de São Paulo, Ciência Animal e Pastagens, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0224 seconds