Return to search

Constraining Cosmological Models of Dark Energy

Avui en dia, l'Univers sembla estar experimentant una fase d'expansió accelerada, com ho demostren les dades de supernoves i posteriorment corroborada per una sèrie de mesuraments cosmològiques -molt recentment pel satèl·lit Planck. Mentre que aquesta expansió pot ser descrit en la teoria de la gravetat d'Einstein mitjançant la invocació de l'existència d'una positiva, però extremadament petita constant cosmològica, Λ, connectat al buit quàntic, s'han proposat moltes alternatives. A grans trets, el contingut d'energia de l'univers actual es pot dividir en 5% de la matèria bariònica i el 95% d'un invisible (conegut com el "sector fosc", perquè els seus components no interactuen electromagnèticament), el 25% del qual constituït per matèria no-relativista, partícules massives d'interacció feble ("matèria fosca freda") i un 75% d'un component amb una enorme pressió negativa, l'anomenada "energia fosca". La naturalesa d'aquest últim component és completament desconegut, això justifica que s'han proposat molts candidats "de prova". De moment, la més simple i de més èxit és la constant cosmològica, esmentada anteriorment. No obstant això, pateix de dos inconvenients principals a nivell teòric: el problema de la coincidència i el problema del “fine-tunning”. L'objectiu d'aquesta memòria és proposar i ajustar els models cosmològics de l'energia fosca que eviten aquestes dificultats.

Aquesta tesi està organitzada de la següent manera: Els capítols § 2, § 3 i § 4 s'introdueixen conceptes bàsics utilitzats en considerar els diferents models que conformen el nostre treball de recerca. Els següents capítols se centren en els diferents models cosmològics. Al § 5, l'energia fosca compleix el principi hologràfic i es postula que interactua (també sense gravetat) amb la matèria fosca. El principi hologràfic estableix una escala de longitud, en aquest cas la longitud d' Hubble, és a dir, la distància que limita els esdeveniments causalment connectats. Al capítol § 6, s'estudia amb més profunditat el model anterior, i es presenta una alternativa al mateix. Tots dos models comparteixen l'evolució fons idèntica però cada component es comporta de manera diferent, la qual cosa indueix un comportament divers quan es consideren les pertorbacions. Això permet discriminar observacionalment un model de l'altre.

Un model d'energia fosca hologràfica més es proposa en el § 7, aquest amb l’escala de longitud determinada per el Radi de Ricci (és a dir, la mida màxima d'una pertorbació que condueix a un forat negre). Un cop més, es suposa una interacció no-gravitacional entre l'energia fosca i la matèria fosca. Al § 8, s'estudia un model unificat (amb una unificació entre la matèria fosca ad energia fosca) proposat anteriorment. Atès que l'espai de paràmetres que s'ajusta a les dades observacionals és molt petit (i també en vista del seu interès teòric), descomponem el component únic en matèria fosca freda i buit que interactuen entre ells. Com a conseqüència, l'espai de paràmetres permesos queda augmentada considerablement. Encara que els models esmentats anteriorment imiten a nivell de fons el model ΛCDM estàndard, els components foscos evolucionen de manera molt diferent. Per estudiar-los rigorosament, els codis numèrics de les pertorbacions cosmològiques han de ser adequadament modificats, amb l'inconvenient d'incrementar notablement el temps de càlcul. Aquest fet és alleujat al § 9, on un nou mètode per calcular l'espectre de potència dels models d'energia fosca és proposat. Finalment, en el § 10 tres noves parametritzacions del paràmetre de desacceleració, amb base a arguments termodinàmics sòlids, es proposen i es contrasta amb les dades observacionals. / Nowadays the Universe appears to be undergoing a phase of accelerated expansion, as witnessed by supernovae data and later corroborated by a host a cosmological measurements -very recently by the Planck satellite. While this expansion can be described in Einstein’s theory of gravity by invoking the existence of a positive but exceedingly small cosmological constant, Λ, connected to the quantum vacuum, many alternative, and sometimes sophisticated, explanations have been proposed. Roughly, the energy content of the present universe can be split into 5% of baryonic matter and 95% of a non-visible (dubbed the “dark sector” because its components do not interact electromagnetically) whose 25% consists of non-relativistic, weakly interacting massive particles (“cold dark matter”) and a 75% of a component with a huge negative pressure, the so-called “dark energy”. The nature of the latter component is completely unknown; this justifies that many “trial” candidates have been proposed. By far, the simplest and most successful one is the cosmological constant, mentioned above. However, it suffers from two main drawbacks at the theoretical level: the coincidence problem and the fine tuning problem. The aim of this Memoir is to propose and constrain cosmological models of dark energy that circumvent these difficulties.
This Memoir is organized as follows: The Chapters §2, §3 and §4 introduce basic concepts widely used when considering the different models that conforms our research work. The following Chapters focus on the different cosmological models. In §5 dark energy is considered connected to the holographic principle and posits that it interacts (also non-gravitationally) with dark matter. The holographic principle sets a length scale, in this case the Hubble length, i.e., the scale of the causally connected events. In §6 the previous model is studied more deeply and an alternative to it is presented. Both models share identical background evolution but each component behaves differently, which induces a diverse behavior at the perturbative level. This allows to observationally discriminate one model from the other.
A further holographic dark energy model is proposed in §7; this one based on the Ricci length (i.e., the maximum size a perturbation can have leading to a black hole). Again, a non-gravitational interaction is assumed between dark energy and dark matter. In §8, a unified dark model (featuring a unification between dark matter ad dark energy) previously proposed is studied. Since the parameter space that fits the observational data is very narrow (and also in view of its theoretical interest), we decompose the single energy component into cold dark matter and quantum vacuum interacting with one another. As a
consequence the allowed parameter space gets substantially augmented. Although the models mentioned above mimic at the background level the standard ΛCDM model, the dark components evolve very differently. To rigorously study them, the numerical codes for the cosmological perturbations must be suitably modified, with the drawback of notably increasing the computational time. This is much alleviated in §9 where a novel method
to calculate the matter power spectrum of dark energy models is proposed. Finally, in §10 three model independent parameterizations of the deceleration parameter, based on solid thermodynamic arguments, are proposed and contrasted with the observational data.

Identiferoai:union.ndltd.org:TDX_UAB/oai:www.tdx.cat:10803/125917
Date19 July 2013
CreatorsDuran Sancho, Ivan
ContributorsPavón Coloma, Diego, Atrio Baran, Fernando, Universitat Autònoma de Barcelona. Departament de Física
PublisherUniversitat Autònoma de Barcelona
Source SetsUniversitat Autònoma de Barcelona
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format164 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/3.0/es/

Page generated in 0.017 seconds