Return to search

Développement de Jonctions Supraconductrices à Effet Tunnel pour le comptage de photons en astronomie

Cette thèse présente la poursuite des travaux grenoblois de développement des Jonctions Supraconductrices à Effet Tunnel (JSET) de types S/Al-AlO_x-Al/S pour le comptage de photons individuels en vue d'applications astronomiques dans l'infrarouge proche. La couche supraconductrice S, en niobium ou en tantale dans notre cas, est photo-absorbante et permet la conversion de l'énergie d'un photon incident en une population de charges excitées dont le nombre est proportionnel à l'énergie déposée et la durée de vie suffisante pour qu'elles soient comptées par effet tunnel. Il suffit pour cela de polariser en tension des jonctions à très basse température (100mK) et d'intégrer les impulsions de courant tunnel photo-induit pour évaluer l'énergie absorbée. L'intérêt des JSET pour la détection lumineuse est discuté dans le premier chapitre au travers de la comparaison des techniques performantes actuelles, aussi bien à base de supraconducteurs (Bolomètres à transition supraconductrice, Bolomètres à électrons chauds) que classiques (Photo-Diodes à Avalanche, Photo-Multiplicateurs, CCD et CMOS). Au démarrage de cette thèse, un procédé de fabrication avait permis d'obtenir des jonctions à base de niobium de bonne qualité et des résultats préliminaires en comptage de photons. L'objectif double était de passer à des jonctions à base de tantale, intrinsèquement plus sensibles, avec un nouveau procédé de fabrication collective plus performant. Dans un premier temps nous avons optimisé la qualité cristalline du dépôt de tantale. Les analyses structurales par rayons X montrent que ces films, déposés par pulvérisation cathodique magnétron à 600$^o$C sur substrat saphir plan-R recouvert d'une sous couche de Nb sont épitaxiés suivant l'axe (100). Les mesures de transport électrique à basse température donnent d'excellents rapports résistifs relatifs (de l'ordre de 45) conduisant à des libres parcours moyens de l'ordre de 100 nm. Dans un second temps, un nouveau procédé original de fabrication collective des jonctions a été imaginé et un jeu de 5 masques a été réalisé. Ces masques permettent la réalisation de jonctions individuelles de différentes tailles (de 25 par 25 à 50 par 50 microns carrés) et formes (quelques dispositifs ont une géométrie en losange ou en forme sinusoïdale). Ils autorisent aussi la réalisation de jonctions multiples sur un absorbeur commun ou de réseau de 9 jonctions (pixels). Le développement de ce procédé et sa fiabilisation ont permis d'obtenir un très fort pourcentage ( >90$%) de jonctions de qualité. Nous avons ainsi obtenu d'excellentes résistances normales de quelques microohm.cm^2 et de faible courant de fuite sous le gap de l'ordre du nA. Enfin, nous avons mis en évidence le fonctionnement de ces dispositifs en comptage de photons à la frontière du visible et de l'infrarouge proche (0,78 micron de longueur d'onde). Et même si une meilleure résolution énergétique requiert encore quelques adaptations expérimentales, les détecteurs obtenus sont particulièrement prometteurs pour l'astronomie au sol, des rayons X à l'infrarouge, aussi bien que pour les télécommunications à 1,55 micron où les possibilités des JSET restent sans équivalent.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00009943
Date20 December 2004
CreatorsJorel, Corentin
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0024 seconds