Neste trabalho investigamos a existência de uma função de Lyapunov associada a um sistema de tipo gradiente, semigrupos ou processos de evolução. Para isso, um estudo detalhado da teoria de Morse desempenha um papel decisivo. Como principal consequência deste estudo obtemos a estabilidade dos sistemas gradientes sob perturbação (autônoma ou não). A aplicabilidade dos resultados abstratos que aqui discutimos é exemplificada estudando-se sistemas de equações diferenciais em espaços de Banach com acoplamento unilateral / In this work we investigated the existence of a Lyapunov function associated to a gradient-like system, semigroups or evolution processes. For that, a detailed study of Morse theory plays a central role. As the main consequence of this study we obtain the stability of gradient systems under perturbation (autonomous or not). The applicability of the abstract results discussed here is exemplified by studying systems of differential equations in Banach spaces with unilateral coupling
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-13042012-162303 |
Date | 14 March 2012 |
Creators | Éder Rítis Aragão Costa |
Contributors | Alexandre Nolasco de Carvalho, Luiz Antonio Barrera San Martin, Hildebrando Munhoz Rodrigues, Ricardo Martins da Silva Rosa, José Antonio Langa Rosado |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0051 seconds