Object detection exists in many countries around the world after a recent growing interest for autonomous vehicles in the last decade. This paper focuses on a vision-based approach focusing on vehicles and pedestrians detection in real-time as a perception for autonomous vehicles, using a convolutional neural network for object detection. A developed YOLOv3-tiny model is trained with the INRIA dataset to detect vehicles and pedestrians, and the model also measures the distance to the detected objects. The machine learning process is leveraged to describe each step of the training process, it also combats overfitting and increases the speed and accuracy. The authors were able to increase the mean average precision; a way to measure accuracy for object detectors; 31.3\% to 62.14\% based on the result of the training that was done. Whilst maintaining a speed of 18 frames per second.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mau-20089 |
Date | January 2020 |
Creators | Vlahija, Chippen, Abdulkader, Ahmed |
Publisher | Malmö universitet, Fakulteten för teknik och samhälle (TS), Malmö universitet, Fakulteten för teknik och samhälle (TS), Malmö universitet/Teknik och samhälle |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds