Return to search

Implementing SAE Techniques to Predict Global Spectacles Needs

This study delves into the application of Small Area Estimation (SAE) techniques to enhance the accuracy of predicting global needs for assistive spectacles. By leveraging the power of SAE, the research undertakes a comprehensive exploration, employing arange of predictive models including Linear Regression (LR), Empirical Best Linear Unbiased Prediction (EBLUP), hglm (from R package) with Conditional Autoregressive (CAR), and Generalized Linear Mixed Models (GLMM). At last phase,the global spectacle needs’ prediction includes various essential steps such as random effects simulation, coefficient extraction from GLMM estimates, and log-linear modeling. The investigation develops a multi-faceted approach, incorporating area-level modeling, spatial correlation analysis, and relative standard error, to assess their impact on predictive accuracy. The GLMM consistently displays the lowest Relative Standard Error (RSE) values, almost close to zero, indicating precise but potentially overfit results. Conversely, the hglm with CAR model presents a narrower RSE range, typically below 25%, reflecting greater accuracy; however, it is worth noting that it contains a higher number of outliers. LR illustrates a performance similar to EBLUP, with RSE values reaching around 50% in certain scenarios and displaying slight variations across different contexts. These findings underscore the trade-offs between precision and robustness across these models, especially for finer geographical levels and countries not included in the initial sample.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:du-47047
Date January 2023
CreatorsZhang, Yuxue
PublisherHögskolan Dalarna, Institutionen för information och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds