O estudo foi feito através de um banco de registros de amostras de Escherichia coli, isoladas de frangos de corte. Na presente tese foram utilizadas 246 amostras do patógeno citado acima, com todas as características utilizadas em recentes trabalhos acadêmicos. Para a classificação das amostras utilizou-se a inteligência artificial, onde traçou-se uma interrelação entre as variáveis usadas: origem (lesões cutâneas, quadros respiratórios, cama), motilidade das amostras, lesões causadas (aerossaculite, pericardite, peritonite, periepatite, celulite), IP, genes (cvaC, iss, iutA, falA, Kpsll, papC, tsh), 14 anitimicrobianos (Amicacina, Amoxacilina e Ácido clavulânico, Ampicilina, Cefalexina, Cefuroxina, Ceftiofur, Ciprofloxacina, Clindamicina, Cotrimoxazol, Enrofloxacina, Gentamicina, Norfloxacina, Ofloxacina, Tetraciclina) e os bioquímicos variáveis (Adonitol, Ornitina, Arginina, Dulcitol, Salicina, Sacarose, Rafinose). No total foram feitas durante a tese em torno de 140 redes neurais, das quais foram utilizadas somente as que melhor apresentaram uma classificação correta e dentre estas as que continham um número menor de variáveis envolvidas. Durante o trabalho foram anexados 5 artigos científicos. Os artigos foram intitulados da seguinte maneira: Resistência antimicrobiana de amostras de Escherichia coli oriundas de camas de aviários, lesões de celulite e de quadros respiratórios de frangos de corte do Rio Grande do Sul; Utilização de inteligência artificial (redes neurais artificiais) para classificar a resistência antimicrobiana de amostras de Escherichia coli isoladas de frango de corte; Utilização de inteligência artificial (redes neurais artificiais) para a classificação do comportamento bioquímico de amostras de Escherichia coli isoladas de frangos de corte; Use of artificial intelligence (artificial meural networks) to classify the pathogenicity of Escherichia coli isolates from broilers; Genes associated with pathogenicity of avian Escherichia coli (APEC) isolated from respiratory cases of poultry. Nos primeiro artigo observou-se uma multi-resistência a pelo menos duas das 14 drogas utilizadas. No segundo artigo citado, notou-se que dentre as amostras analisadas corretamente apresentaram uma porcentagem de 84% a 100% nas amostras intermediárias, 81% a 100% para as resistentes, 89% a 100% sensíveis. No terceiro trabalho, foi concluído que as redes feitas foram capazes de classificar corretamente as amostras com uma amplitude de 87,80% a 98,73%. Além disso, a sensibilidade e a especificidade das classificações obtidas variam de 59,32% a 99,47% e de 80,00% a 98,54%, respectivamente. No quarto artigo, seguindo a ordem descrita acima, as redes construídas que usaram 11 categorias dos índices de patogenicidade, apresentaram 54,27% de classificações corretas, no entanto quando foram usadas somente 3 categorias essa porcentagem subiu para 80,55%. Houve um aumento das classificações corretas para 83,96% quando as categorias foram apenas duas. No quinto artigo, foram usadas um total de 61 amostras de Escherichia coli, onde foram testadas a presença dos genes citados no início deste resumo, e houve uma presença de 73,8% do gene iss, 55,7% do tsh, 45,9% do iutA, 39,3% do felA, o papc apareceu em 24,3% das amostras, o cvaC em 23%, e por fim, o kpsll em 18%. Mais uma vez pode-se afirmar, que o uso das redes neurais artificiais cada mais, está servindo como uma ferramenta que dá um suporte científico para a tomada de decisão. / This study was made using a data bank with samples of Escherichia coli, isolated from broilers. In the present thesis, 246 samples of the mentioned pathogenic bacteria, which were cited above, with all the characteristics used in recent academic works. For the classification of the samples, artificial intelligence was used, and a correlation between the taken variables was established: origin (cutaneous lesions, lesions of poultry with respiratory signals, litter of poultry house), motility of the samples, injuries (aerosaculitis, pericarditis, peritonitis, periepatitis, celullitis), PI, genes (cvaC, iss, iutA, falA, Kpsll, papC, tsh), 14 antimicrobials (Amikacyn, Amoxacillin and clavulanic acid, Ampicilin, Cefalexin, Cefuroxime, Ceftiofur, Ciprofloxacin, Clindamycin, Cotrimoxazole, Enrofloxacin, Gentamycin, Norfloxacin, Ofloxacin, Tetracyclin) and the biochemical profile (Adonitol, Ornithine, Arginine, Dulcitol, Salicin, Sucrose, Raffinose). In this thesis, 140 neural networks were constructed, from which the ones that presented the best correct classifications, and the ones that used the lesser number of variables were chosen. Five scientific articles were annexed. The articles were entitled in the following way: Antimicrobial resistance of samples of Escherichia coli from litter of poultry house, celullitis lesions, and lesions of poultry with respiratory signals in broilers of Rio Grande do Sul; The use of artificial intelligence (artificial neural networks) to classify the antimicrobial resistance isolated from samples of Escherichia coli in broilers; The use of artificial intelligence (artificial neural networks) to classify the biochemical profile of samples isolated from Escherichia coli in broilers; The use of artificial intelligence (artificial neural networks) to classify the pathogenicity of Escherichia coli isolates from broilers; Genes associated with pathogenicity of avian Escherichia coli (APEC) isolated from respiratory cases of poultry. In the first article a multi resistance at least to two of the 14 used drugs was observed. In the second article, it was noticed that 84% to 100% were intermediate, 81% to 100% were resistant, and 89% to 100% were sensible. In the third work, it was concluded that the neural networks were able to classify correctly with an amplitude from 87.80% to 98.73%. Moreover, the sensitivity and the specificity of the gotten classifications vary from 59.32% to 99.47% and from 80.00% to 98.54%, respectively. In the fourth article, following the described order above, the constructed neural networks, which used 11 categories of the pathogenicity indices, presented 54.27% of correct classifications, when just 3 categories were used, the correct classification went up to 80,55%. There was an increase in the correct classifications to 83.96% when the categories were only two. In the fifth paper, it was used a total of 61 samples of Escherichia coli, and tested the presence of the cited genes at the beginning of this summary, and the presence was 73.8% of the gene iss, 55.7% of tsh, 45.9% of iutA, 39.3% of felA, papc appeared in 24.3% of the samples, cvaC in 23%, and finally, kpsll in 18%. One more time, it can be affirmed that the use of artificial neural networks is serving as a tool to provide a scientific support for the decision making.
Identifer | oai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/17454 |
Date | January 2009 |
Creators | Salle, Felipe de Oliveira |
Contributors | Salle, Carlos Tadeu Pippi |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds