Return to search

Répétitions dans les mots et seuils d'évitabilité

Nous étudions dans cette thèse différents problèmes d'évitabilité des répétitions dans les mots infinis. Soulevée par Thue et motivée par ses travaux sur les mots sans carrés, la problématique s'est développée au cours du XXe siècle, et est aujourd'hui devenue un des grands domaines de recherche en combinatoire des mots. En 1972, Dejean proposa une importante conjecture, dont la validation étape par étape s'est terminée récemment (2009). La conjecture concerne le seuil des répétitions d'un alphabet, i.e., la borne inférieure des exposants évitables sur cet alphabet. La notion de seuil, comme frontière entre évitabilité et non-évitabilité d'un ensemble donné de mots, est le fil directeur de nos travaux. Nous nous intéressons d'abord à une généralisation du seuil des répétitions (nous donnons des encadrements de sa valeur). Cette notion permet d'ajouter, pour décrire l'ensemble des répétitions à éviter, au paramètre de l'exposant, celui de la longueur des répétitions. Puis, nous étudions des problèmes d'existence de mots dans lesquels, simultanément, certaines répétitions sont interdites et d'autres sont forcées. Nous répondons, pour l'alphabet ternaire, à la question : quels réels sont l'exposant critique d'un mot infini sur un alphabet fixé? Nous introduisons ensuite une notion de haute répétitivité, et établissons une description partielle des couples d'exposants paramètrant une double contrainte de haute répétitivité et d'évitabilité. Pour finir, nous utilisons des résultats et techniques issus de ces problématiques pour résoudre une question de coloration de graphes : nous introduisons un seuil des répétitions, calqué sur celui connu pour les mots, et donnons sa valeur pour deux classes de graphes, les arbres et les graphes de subdivisions. / In this thesis we study various problems on repetition avoidance in infinite words. Raised by Thue and motivated by his work on squarefree words, the topic developed during the 20th century, and has nowadays become a principal area of research in combinatorics on words. In 1972, Dejean proposed an important conjecture whose verification in steps was completed recently (2009). The conjecture concerns the repetition threshold for an alphabet, i.e., the infimum of the avoidable exponents for that alphabet. The notion of threshold as a borderline between avoidability and unavoidability for a given set of words is the guiding line of our work. First, we focus on a generalization of the repetition threshold. This concept allows us to include, in addition to the exponent, the length of the repetitions as a parameter in the description of the set of repetitions to avoid. We obtain various bounds in that respect. We then study existence problems for words in which simultaneously some repetitions are forbidden, and others are forced. For the ternary alphabet, we answer the question: what real numbers are the critical exponent of some infinite word over a given alphabet? Also, we introduce a notion of highly repetitive words and give a partial description of the pairs of exponents which parameterize the existence of words both highly repetitive and repetition-free. Finally, we use results and techniques stemming from those problems to solve a question on graph colouring: we introduce a repetition threshold adapted from the thresholds we know for words, and give its value for two classes of graphs, namely, trees and subdivision graphs.

Identiferoai:union.ndltd.org:theses.fr/2011AIX22048
Date23 June 2011
CreatorsVaslet, Elise
ContributorsAix-Marseille 2, Ferenczi, Sébastien, Cassaigne, Julien
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds