Return to search

Translational regulation of genes in salmonella typhimurium by vitamin B12

<p>In this thesis I have studied the mechanism by which vitamin B12 regulates the expression of the <i>cob</i> operon and the <i>btuB</i> gene in <i>Salmonella typhimurium</i>. The <i>cob</i> operon encodes most of the 25 genes required for the <i>de novo</i> synthesis of vitamin B12, and the <i>butB</i> gene encodes the outer membrane protein needed for transport of exogenous vitamin B12 into the cell. Vitamin B12 is used as a cofactor in four enzymatic reactions in <i>Salmonella typhimurium</i>. The regulation by vitamin B12 of the <i>cob</i> operon and the <i>btuB</i> gene requires sequences in the long leader regions of the respective mRNAs. Proper folding of the reader mRNA is essential for normal repression, in particular a hairpin structure that sequesters the ribosomal binding site (RBS). The upstream leader region contains two conserved sequence elements that are required for the vitamin B12 regulation; the translational enhancer (TE) element element and the B12 box. The TE element confers its enhancer function by resolving the downstream inhibitory RBS hairpin through basepairing with nucleotides in the stem. In the presence of vitamin B12, either B12 itself, or a B12 regulatory factor binds to the upstream reader region and prevents the enhancer function. This will inhibit unfolding of the RBS hairpin and repress translation.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-547
Date January 2000
CreatorsRavnum, Solveig
PublisherUppsala University, Department of Cell and Molecular Biology, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationComprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1104-232X ; 591

Page generated in 0.0018 seconds