To understand remotely sensed data, one must understand the relationship between radiative transfer models and their predictions of the interaction of solar radiation on geophysical media. If it can be established that these models are indeed accurate, some form of evaluation has to be performed on these models, for users to choose the model that suits their requirements. This thesis focuses on the implementation of a variable linear kernel model, its validation, and to study its application in the prediction of BRDF effects using two different neural networks-- the backpropogation and the radial basis function neural network and finally to draw conclusions on which neural network is best suited for this model. Based on these results the optimum number of kernels for this model is derived.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2990 |
Date | 07 May 2005 |
Creators | Manoharan, Madhu |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds