Return to search

Exciton Simulations Of The Optical Properties Of Several Photosynthetic Light-harvesting Complexes

The work presented in this thesis was aimed to investigate the structure-function relationship of several photosynthetic Light-Harvesting Complexes (LHCs) including Chlorophyll Protein 29 (CP29) and Light-Harvesting Complex II (LHCII) of green plants, and Fenna-Matthews-Olson (FMO) complex of green sulfur bacterium Chlorobium tepidum. Based on the exciton calculations, a model was proposed to the electronic excited states (EES) of both CP29 and LHCII complexes by incorporating a considerable part of the current information offered by structure determination, mutagenesis analysis and spectroscopy in the modeling. The essential parameters for characterizing the excited states, Qy dipole orientations and site energies were assigned by suggesting a model that can explain both the key features of the linear (polarized) absorption spectra and the time scales of the energy transfer processes in CP29 and LHCII. The idea of offering structural information through setting connection between the spectroscopy and the spectral simulations were supported by the presented results on CP29 and LHCII. New spectroscopic measurements (absorption, linear dichroism (LD) and circular dichroism), carried out at 4 K on the FMO complex were presented, and also the LD spectrum was corrected for the degree of orientation of the sample, in order to provide comparison of not only the shape but also the size of the simulated and experimental spectra. The EES structure of the FMO complex was studied by simulating the measured optical spectra with more realistic model than the previously applied models. Simulations have been carried out with a computer program based on exciton model, which includes inhomogeneous, homogeneous and lifetime broadenings explicitly.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12605040/index.pdf
Date01 June 2004
CreatorsIseri, Erkut Inan
ContributorsGulen, Demet
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0013 seconds