Aktinomyzeten sind ein Teil der residenten Flora des menschlichen Verdauungstraktes, des Urogenitalsystems und der Haut. Die zeitraubende Isolation und Identifikation der Aktinomyzeten durch konventionelle Methoden stellt sich häufig als sehr schwierig dar. In den letzten Jahren hat sich jedoch die Matrix-unterstützte Laser-Desorption/Ionisation-Flugzeit-Massenspektrometrie (MALDI-TOF-MS) als Alternative zu etablierten Verfahren entwickelt und stellt heutzutage eine schnelle und simple Methode zur Bakterienidentifikation dar. Unsere Studie untersucht den Nutzen dieser Methode für eine schnelle und zuverlässige Identifizierung von oralen Aktinomyzeten, die aus dem subgingivalen Biofilm parodontal erkrankter Patienten isoliert wurden. In dieser Studie wurden elf verschiedene Referenzstämme aus den Stammsammlungen ATCC und DSMZ und 674 klinische Stämme untersucht. Alle Stämme wurden durch biochemische Methoden vorab identifiziert und anschließend ausgehend von den erhobenen MALDI-TOF-MS-Daten durch Ähnlichkeitsanalysen und Klassifikationsmethoden identifiziert und klassifiziert. Der Genotyp der Referenzstämme und von 232 klinischen Stämmen wurde durch Sequenzierung der 16S rDNA bestimmt. Die Sequenzierung bestätigte die Identifizierung der Referenzstämme. Diese und die zweifelsfrei durch 16S rDNA Sequenzierung identifizierten Aktinomyzeten wurden verwendet, um eine MALDI-TOF-MS-Datenbank zu erstellen. Methoden der Klassifikation wurden angewandt, um eine Differenzierung und Identifikation zu ermöglichen. Unsere Ergebnisse zeigen, dass eine Kombination aus Datenerhebung mittels MALDI-TOF-MS und deren Verarbeitung mittels SVM-Algorithmen eine gute Möglichkeit für die Identifikation und Differenzierung von oralen Aktinomyzeten darstellt.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:13948 |
Date | 10 November 2015 |
Creators | Borgmann, Toralf Harald |
Contributors | Rodloff, Arne C., Eschrich, Klaus, Stingu, Catalina-Suzana, Liebert, Gerd Uwe, Schaumann, Reiner, Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds