With the development of autonomous driving technology, vehicle trajectory prediction has become a hot topic in the intelligent traffic area. However, complex road conditions may bring multiple challenges to the vehicle trajectory prediction model. To address this, most recent studies mainly focus on designing different neural network structures to learn vehicles’ dynamics and interaction features for better prediction. In this thesis we restrict our research scope to highway scenarios. Based on the experimental comparison among Vanilla Recurrent Neural Network (Vanilla RNN), Vanilla Long short-term memory (Vanilla LSTM), and Vanilla-Transformer, we find the best configuration of the Dynamics-Only encoder module and utilize it to design a novel model called the LSTM-Attention model for vehicle trajectory prediction. The objective of our design is to explore whether the Self-Attention mechanism based encoder outperforms the pooling mechanism based encoder utilized in most current baseline models. The experiment results on the interaction encoder module show that the Self- Attention mechanism based encoder with 8 heads outperforms the pooling mechanism based encoder for the longer prediction horizons. To test the robustness of our LSTM-Attention model, we also compare the prediction performance between using Maneuver-Based decoder and using Maneuver-Free decoder, respectively. According to the experiment results, we find the Maneuver-Based decoder performs better on the heavily unbalanced Next Generation Simulation (NGSIM) dataset. Finally, to explore other latent interaction features our LSTM-Attention model might fuse, we analyze the Graph-Based encoder and the Polar-Based encoder, respectively. Based on this, we find more meaningful designs that could be exploited in our future work. / Med utvecklingen av självkörande fordon har förmågan att förutsäga fordonsbanan blivit ett attraktivt ämne inom intelligenta trafiksystem. Däremot kan komplexa vägförhållanden medföra flera utmaningar för modellering av fordonets bana. För att ta itu med detta fokuserar de senaste studierna huvudsakligen på att designa olika neurala nätverksstrukturer för att lära sig fordons dynamiker och interaktioner för bättre kunna förutsäga resebanan. I denna avhandling begränsar vi vårt forskningsområde till motorvägsscenarier. Baserat på den experimentella jamförelsen mellan Vanilla Recurrent Neural Network (Vanilla RNN), Vanilla Long-korttidsminne (Vanilla LSTM) och Vanilla-Transformer, hittar vi den bästa konfigurationen av Dynamic-Only kodningsmodulen och använder den för att designa en enkel modell som vi kallar LSTM- Attention-modellen för förutsägelse av fordonets resebana. Målet med vår design är att undersöka om den Self-Attention-baserade kodaren överträffar den pooling-baserade kodaren som används i de flesta nuvarande basmodeller. Experimentens resultat på interaktionskodarmodulen visar att Self-Attention kodaren med 8 huvuden överträffar den poolning baserade kodaren när de gäller längre fönster av förutsägelser. För att testa robustheten hos vår LSTM-Attention-modell, jämför vi också prestandan mellan att använda manöverbaserad avkodare respektive att använda manöverfri avkodare. Enligt experimentens resultat finner vi att den manöverbaserade avkodaren presterar bättre på den kraftigt obalanserade Next Generation Simulation (NGSIM) datamängden. Slutligen, för att utforska andra möjliga egenskaper som vår LSTM-Attention-modell kan utnytja, analyserar vi den grafbaserade kodaren respektive den polbaserade kodaren. Baserat på detta så hittar vi mer meningsfulla mönster som skulle kunna utnyttjas i framtida arbeten.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321811 |
Date | January 2022 |
Creators | Wu, Wenxuan |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:800 |
Page generated in 0.0023 seconds