Darbas apima banko klientų kredito istorinių duomenų dėsningumų tyrimą. Pirmiausia nagrinėjamos banko duomenų saugyklos, siekiant kuo geriau perprasti bankinius duomenis. Vėliau naudojant banko duomenų imtis, kurios apima kreditų grąžinimo istoriją, siekiama įvertinti klientų nemokumo riziką. Tai atliekama adaptuojant algoritmus bei programinę įrangą duomenų tyrimui, kuris pradedamas nuo informacijos apdorojimo ir paruošimo. Paskui pritaikant įvairius klasifikavimo algoritmus, sudarinėjami modeliai, kuriais siekiama kuo tiksliau suskirstyti turimus duomenis, nustatant nemokius klientus. Taip pat siekiant įvertinti kliento vėluojamų mokėti paskolą dienų skaičių pasitelkiami regresijos algoritmai bei sudarinėjami prognozės modeliai. Taigi darbo metu atlikus numatytus tyrimus, pateikiami duomenų vitrinų modeliai, informacijos srautų schema. Taip pat nurodomi klasifikavimo ir prognozavimo modeliai bei algoritmai, geriausiai įvertinantys duotas duomenų imtis. / This work is about analysing regularities in bank clients historical credit data. So first of all bank information repositories are analyzed to comprehend banks data. Then using data mining algorithms and software for bank data sets, which describes credit repayment history, clients insolvency risk is being tried to estimate. So first step in analyzis is information preprocessing for data mining. Later various classification algorithms is used to make models wich classify our data sets and help to identify insolvent clients as accurate as possible. Besides clasiffication, regression algorithms are analyzed and prediction models are created. These models help to estimate how long client are late to pay deposit. So when researches have been done data marts and data flow schema are presented. Also classification and regressions algorithms and models, which shows best estimation results for our data sets, are introduced.
Identifer | oai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2010~D_20110709_152442-86545 |
Date | 09 July 2011 |
Creators | Žiupsnys, Giedrius |
Contributors | Sakalauskas, Leonidas, Vilnius University |
Publisher | Lithuanian Academic Libraries Network (LABT), Vilnius University |
Source Sets | Lithuanian ETD submission system |
Language | Lithuanian |
Detected Language | Unknown |
Type | Master thesis |
Format | application/pdf |
Source | http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20110709_152442-86545 |
Rights | Unrestricted |
Page generated in 0.0027 seconds