In many digital signal processing applications, we often need some special function units that can compute complicated arithmetic functions such as reciprocal, square-root, base-2 logarithm, power of 2, trigonometric functions, etc. The most popular design approaches to compute these single-value functions are based on look-up tables (LUT) with interpolation. In general, there are two different types of LUT-based method: piecewise and multipartite. As the required bit accuracy increases, the size of LUT increases exponentially. In this thesis, we will develop a generator that can automatically synthesize suitable hardware to compute these special arithmetic functions given the required bit accuracy. In particular, higher-order piecewise method will be supported to reduce the table size for high-accuracy applications. The synthesized arithmetic units are used in the design of a vertex shader for 3D graphics application.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0910108-124935 |
Date | 10 September 2008 |
Creators | Lin, Ching-Pin |
Contributors | Shiann-Rong Kuang, Chuen-Yau Chen, Shen-Fu Hsiao |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0910108-124935 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0194 seconds