The main objective of this dissertation is to present an algebraic method capable of determining a solution, if any, of a non linear polynomial equation systems using Gröbner basis. In order to accomplish that, we first present some concepts and theorems linked to polynomial rings with several undetermined and monomial
ideals where we highlight the division extended algorithm, the Hilbert Basis and the Buchberger´s algorithm. Beyond that, using basics of Elimination and Extension Theorems, we present an algebraic solution to the map coloring that use 3 colors as
well as a general solution to the Sudoku puzzle. / O objetivo principal desse trabalho é, usando bases de Gröbner, apresentar um método algébrico capaz de determinar a solução, quando existir, de sistemas de equações polinomiais não necessariamente lineares. Para tanto, necessitamos inicialmente apresentar alguns conceitos e teoremas ligados a anéis de polinômios com várias indeterminadas e de ideais monomiais, dentre os quais destacamos o algoritmo extendido da divisão, o teorema da Base de Hilbert e o algoritmo de Buchberger. Além disso, usando noções básicas da Teoria de eliminação e extensão, apresentamos uma solução algébrica para o problema da coloração de mapas usando três cores, bem como um solução geral para o puzzle Sudoku.
Identifer | oai:union.ndltd.org:IBICT/oai:ri.ufs.br:riufs/6524 |
Date | 10 April 2015 |
Creators | Vilanova, Fábio Fontes |
Contributors | Ramos, Zaqueu Alves |
Publisher | Universidade Federal de Sergipe, Mestrado Profissional em Matemática, UFS, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFS, instname:Universidade Federal de Sergipe, instacron:UFS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0203 seconds