Return to search

Wine quality prediction model using machine learning techniques

The quality of a wine is important for the consumers as well as the wine industry. The traditional (expert) way of measuring wine quality is time-consuming. Nowadays, machine learning models are important tools to replace human tasks. In this case, there are several features to predict the wine quality but the entire features will not be relevant for better prediction. So, our thesis work is focusing on what wine features are important to get the promising result. For the purposeof classification model and evaluation of the relevant features, we used three algorithms namely support vector machine (SVM), naïve Bayes (NB), and artificial neural network (ANN). In this study, we used two wine quality datasets red wine and white wine. To evaluate the feature importance we used the Pearson coefficient correlation and performance measurement matrices such as accuracy, recall, precision, and f1 score for comparison of the machine learning algorithm. A grid search algorithm was applied to improve the model accuracy. Finally, we achieved the artificial neural network (ANN) algorithm has better prediction results than the Support Vector Machine (SVM) algorithm and the Naïve Bayes (NB) algorithm for both red wine and white wine datasets.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:his-20009
Date January 2021
CreatorsKothawade, Rohan Dilip
PublisherHögskolan i Skövde, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds