Return to search

Bayesian Networks for Modelling the Respiratory System and Predicting Hospitalizations

Bayesian networks can be used to model the respiratory system. Their structure indicate how risk factors, symptoms, and diseases are related and the Conditional Probability Tables enable predictions about a patient’s need for hospitalization. Numerous structure learning algorithms exist for discerning the structure of a Bayesian network, but none can guarantee to find the perfect structure. Employing multiple algorithms can discover relationships between variables that might otherwise remain hidden when relying on a single algorithm. The Maximum Likelihood Estimator is the predominant algorithm for learning the Conditional Probability Tables. However, it faces challenges due to the data fragmentation problem, which can compromise its predictions. Failing to hospitalize patients who require specialized medical care could lead to severe consequences. Therefore, in this thesis, the use of an XGBoost model for learning is proposed as a novel and better method since it does not suffer from data fragmentation. A Bayesian network is constructed combining several structure learning algorithms, and the predictive performance of the Maximum Likelihood Estimator and XGBoost are compared. XGBoost achieved a maximum accuracy of 86.0% compared to the Maximum Likelihood Estimator, which attained an accuracy of 81.5% in predicting future patient hospitalization. In this way, the predictive performance of Bayesian networks has been enhanced. / Bayesianska nätverk kan användas för att modellera andningssystemet. Deras struktur visar hur riskfaktorer, symtom och sjukdomar är relaterade, och de villkorliga sannolikhetstabellerna möjliggör prognoser om en patients behov av sjukhusvård. Det finns många strukturlärningsalgoritmer för att urskilja strukturen i ett bayesianskt nätverk, men ingen kan garantera att hitta den perfekta strukturen. Genom att använda flera algoritmer kan man upptäcka relationer mellan variabler som annars kan förbli dolda när man bara förlitar sig på en enda algoritm. Maximum Likelihood Estimator är den dominerande algoritmen för att lära sig de villkorliga sannolikhetstabellerna. Men den står inför utmaningar på grund av datafragmenteringsproblemet, vilket kan äventyra dess prognoser. Att inte lägga in patienter som behöver specialiserad medicinsk vård kan leda till allvarliga konsekvenser. Därför föreslås i denna avhandling användningen av en XGBoost-modell för inlärning som en ny och bättre metod eftersom den inte lider av datafragmentering. Ett bayesianskt nätverk byggs genom att kombinera flera strukturlärningsalgoritmer, och den prediktiva prestandan för Maximum Likelihood Estimator och XGBoost jämförs. XGBoost uppnådde en maximal noggrannhet på 86,0% jämfört med Maximum Likelihood Estimator, som uppnådde en noggrannhet på 81,5% för att förutsäga framtida patientinläggning. På detta sätt har den prediktiva prestandan för bayesianska nätverk förbättrats.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-339937
Date January 2023
CreatorsLopo Martinez, Victor
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2023:767

Page generated in 0.0028 seconds