An Application Programming Interface (API) provides developers with a high-level framework that abstracts the underlying implementation of services. Using an API reduces the time developers spent on implementation, and it encourages collaboration and innovation from third-party developers. Making an API public has a risk: developers might use it inappropriately. Most APIs have a policy that states which behaviors are considered fraudulent. Detecting applications that fraudulently use an API is a challenging problem: it is unfeasible to review all applications that make requests. API providers aim to implement an automatic tool that accurately detects suspicious applications from all the requesting applications. In this thesis, we study the possibility of using machine learning techniques to detect fraud in Web APIs. We experiment with supervised learning methods (random forests and gradient boosting), clustering methods such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and ensemble methods that combine the predictions of supervised learning methods and clustering methods. The dataset available contains data gathered when a developer creates an application and data collected when the application starts making HTTP requests. We derive a meaningful representation from the most important textual fields of the dataset using Sentence-BERT (S-BERT). Furthermore, we experiment with the predictive importance of the S-BERT embeddings. The method that achieves the best performance in the test set is an ensemble method that combines the results from the gradient boosting classifier and DBSCAN. Furthermore, this method performs better when using the S-BERT embeddings of the textual data of the applications, achieving an f1-score of 0.9896. / Ett API (Application Program Interface) ger utvecklare ett högnivåramverk som abstraherar den underliggande implementationen av tjänster. Användning av ett API reducerar tiden utvecklare lägger på implementation, och uppmuntrar samarbete med och innovation av tredjeparts-utvecklare. Att göra ett API publikt har ett risk: utvecklare kan utnyttja den på olämpliga sätt. De flesta API:erna har ett policy som beskriver beteenden som räknas som bedrägliga. Upptäckandet av applikationer som använder ett API på ett bedrägligt sätt är ett icke-trivialt problem, det är omöjligt att undersöka alla applikationer som skickar begäran till API:et. API leverantörerna siktar ständigt på att skapa ett automatiskt verktyg för att exakt upptäcka applikationer misstänkta för bedrägeri. I denna avhandling undersöks möjligheten av användning av maskininlärning för att upptäcka bedrägeri i Web API. Vi experimenterar med övervakad inlärningsmetoder (random forests och gradient boosting), klustring metoder som Density-Based Spatial Clustering of Applications with Noise (DBSCAN) och ensemble metoder som kombinerar prediktionerna av övervakad inlärningsmetoder och klustring metoder. Det tillgängliga datasetet innehåller data samlat när en utvecklare skapar en applikation och när den börjar skicka HTTP begäran. Vi härleder en meningsfull representation från de viktigaste textfälten i datasetet med hjälp av Sentence-BERT (SBERT). Dessutom experimenterar vi med den prediktiva betydelsen av S-BERT-inbäddningarna. Metoden som uppfyller den bästa prestandan i testsetet är ett ensemble metod som kombinerade resultaten från gradient boosting klassificeraren och DBSCAN. Denna metod presterar även bättre vid användning av S-BERT-inbäddnignarna av applikationernas textdata och därav uppnår ett f1-score på 0.9896.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321025 |
Date | January 2022 |
Creators | Sánchez Espunyes, Anna |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:554 |
Page generated in 0.0016 seconds