With the growing number of large data sets, the necessity of complexity reduction applies today more than ever before. Moreover, some data may also be vague or uncertain. Thus, whenever we have an instrument for data analysis, the questions of how to apply complexity reduction methods and how to treat fuzzy data arise rather naturally. In this thesis, we discuss these issues for the very successful data analysis tool Formal Concept Analysis. In fact, we propose different methods for complexity reduction based on qualitative analyses, and we elaborate on various methods for handling fuzzy data. These two topics split the thesis into two parts. Data reduction is mainly dealt with in the first part of the thesis, whereas we focus on fuzzy data in the second part. Although each chapter may be read almost on its own, each one builds on and uses results from its predecessors. The main crosslink between the chapters is given by the reduction methods and fuzzy data. In particular, we will also discuss complexity reduction methods for fuzzy data, combining the two issues that motivate this thesis. / Komplexitätsreduktion ist eines der wichtigsten Verfahren in der Datenanalyse. Mit ständig wachsenden Datensätzen gilt dies heute mehr denn je. In vielen Gebieten stößt man zudem auf vage und ungewisse Daten. Wann immer man ein Instrument zur Datenanalyse hat, stellen sich daher die folgenden zwei Fragen auf eine natürliche Weise: Wie kann man im Rahmen der Analyse die Variablenanzahl verkleinern, und wie kann man Fuzzy-Daten bearbeiten? In dieser Arbeit versuchen wir die eben genannten Fragen für die Formale Begriffsanalyse zu beantworten. Genauer gesagt, erarbeiten wir verschiedene Methoden zur Komplexitätsreduktion qualitativer Daten und entwickeln diverse Verfahren für die Bearbeitung von Fuzzy-Datensätzen. Basierend auf diesen beiden Themen gliedert sich die Arbeit in zwei Teile. Im ersten Teil liegt der Schwerpunkt auf der Komplexitätsreduktion, während sich der zweite Teil der Verarbeitung von Fuzzy-Daten widmet. Die verschiedenen Kapitel sind dabei durch die beiden Themen verbunden. So werden insbesondere auch Methoden für die Komplexitätsreduktion von Fuzzy-Datensätzen entwickelt.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:26470 |
Date | 20 December 2012 |
Creators | Glodeanu, Cynthia Vera |
Contributors | Ganter, Bernhard, Krupka, Michal, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds