Return to search

Lebensdaueruntersuchungen an organischen Solarzellen

Diese Arbeit beschäftigt sich mit der Untersuchung der Langzeitstabilität organischer Solarzellen. Die Solarzellen als Gegenstand dieser Untersuchungen sind dabei aus Materialien aufgebaut, die mittels thermischer Gasphasenabscheidung im Vakuum hergestellt werden. Das unterscheidet diese von vielen in der Literatur vorgestellten Alterungsstudien, die Polymersolarzellen behandeln. Als Standardsystem werden einfache pii-Bauelemente ausgewählt, die in ZnPc und C60 zwei gut untersuchte Materialien in der aktiven Donor-Akzeptor-Schicht nutzen.

Die Ergebnisse dieser Arbeit sind dabei in drei Kapiteln zusammengefasst. In Kapitel 5 wird untersucht, wie sich verschiedene Faktoren auf die Lebensdauer der Solarzellen auswirken. Für verkapselte Solarzellen mit MeO-TPD in der Lochtransportschicht wird die thermische Beschleunigung der Degradation mit einem Arrhenius’schen Verhalten beschrieben und eine Aktivierungsenergie EA=712 meV gefunden. Aus dieser Beschreibung wird für verkapselte Solarzelle bei 100 mW cm-2 und 45°C eine Lebensdauer von 62.000 h extrapoliert, die experimentell nicht verifiziert werden kann.

Auch der Einfluss der Beleuchtungsintensität auf die Degradationsgeschwindigkeit wird untersucht und kann systematisch erklärt werden: Die Beschleunigung, die sich aus einer Erhöhung der Intensität weißen Lichtes ergibt, kann beschrieben werden, indem man die Anzahl extrahierter Ladungsträger berechnet. Bei Alterungen unter verschiedene Intensitäten ist diese Zahl identisch, wenn man die Messung bei gleichem Grad der Degradation betrachtet. Diese Modell kann auch auf monochromatische Beleuchtung ausgedehnt werden und es zeigt sich bei einem Vergleich über alle untersuchten Wellenlängen, dass der Anstieg der fallenden Kurven umso steiler wird, je höher die kürzeste Wellenlänge des jeweiligen Spektrums ist.

Der zweite Teil dieses Kapitels ist der Degradation unverkapselter Solarzellen mit BF-DPB als Lochtransportmaterial gewidmet. Durch Variation von Temperatur und relativer Luftfeuchte konnten beide Einflussfaktoren in einem kombinierten Modell, dem Peck-Modell, zusammengefasst werden. Dieses wurde bisher nicht zur Beschreibung des Degradationsverhaltens von Solarzellen verwendet. Eine Vorhersage der Lebensdauer bei beliebigen Werten für beide Parameter ist somit möglich. Deutlich sticht in diesem Experiment hervor, dass die Anwesenheit von Wasser die Degradation klar dominiert.

Darauf folgen Messungen, bei denen die Wasserpermeationsrate (WVTR) der Verkapselung variiert wird. Dabei stellt sich heraus, dass diese besser als 10-3 g m-2 d-1 sein muss, um die Stabilität zu verbessern. Durch eine Trennung der WVTR der äußeren Barriere und jener der Aluminiumelektrode ist es möglich, den Wert WVTR(Al) zu ermitteln. Dieser beträgt 8 x10-4 g m-2 d-1. Zusätzlich kann die Wassermenge, die benötigt wird, um die untersuch-ten Solarzelle auf 50% des Startwertes zu degradieren, zu 10 mg m2 bestimmt werden.

Kapitel 6 zeigt eine umfassende Charakterisierung von an Luft degradierten Solarzellen. Mit den chemischen Analysemethoden TOF-SIMS und LDI-TOF-MS können mehrere Reaktionen der verwendeten Materialien mit Luft identifiziert werden. Dabei sticht die Oxidation der BPhen-Aluminium-Grenzschicht, die zur Bildung von Al2O3 führt, hervor. Weitere Reaktionsprodukte, vor allem in Verbindung mit Fluor, welches aus der Zersetzung von C60F36 stammt, werden gezeigt. Die Oxidation der Organik-Aluminium-Grenzschicht kann mit Hilfe von Elektrolumineszenzmessungen untersucht werden. Bei diesen zeigt sich, dass die Abnahme der aktiven Fläche in vollem Umfang Ursache für die Reduktion der Kurzschlussstromdichte ist. Als Eintrittskanäle für Sauerstoff und Wasser werden neben pinholes auch die Seitenkanten der Solarzelle identifiziert. Hinweise für die flächige Diffusion von Wasser werden zusätzlich erbracht.

Erster Ansatz zur Verbesserung der Langzeitstabilität ist der Austausch von BPhen durch ein dotiertes Elektronen-transportmaterial. Eine Variation von fünf Materialien zeigt, dass ein Zusammenhang zwischen Rauigkeit dieses Materials und der Lebensdauer besteht: So werden die besten Stabilität für Materialien wie C60 und Bis-HFl-NTCDI gezeigt, die mit einer geringen Rauigkeit aufwachsen. Die Lebensdauer beträgt am Beispiel von Bis-HFl-NTCDI bei [T=65°C; rH=2,2%] T50=762 h und ist damit etwa viermal so groß wie bei Verwendung von BPhen.

Weitere Optimierungsversuche, zum Beispiel durch Variation der Elektrode, des p-Dotanden, oder der Invertierung der Struktur zeigen zwar zusätzliche Degradationspfade auf, führen aber zu keiner Verbesserung der Stabilität. Auf Basis zuvor durchgeführter Überlegungen zu Redoxreaktionen (organischer) Materialien mit Wasser und Sauerstoff wird zum Abschluss der Arbeit ein möglicher Aufbau für luftstabile organische Solarzellen vorgeschlagen.:1 Einleitung
2 Grundlagen
2.1 Organische Halbleiter
2.2 Grundlagen der Photovoltaik
2.3 Quasi-Fermi-Niveaus & Würfel-Modell
2.4 Organische Solarzellen
3 Grundlagen zu Langzeitmessungen
3.1 Anforderungen an organische Solarzellen
3.2 Materialien
4 Experimentelle Grundlagen
4.1 Herstellung der Solarzellen und Ca-Tests
4.2 Verkapselung
4.3 Charakterisierungsmethoden
4.4 Alterungsmessungen
4.5 Verwendeter Probenaufbau
5 Variation der Alterungsbedingungen
5.1 Alterung in Inertatmosphäre
5.2 Alterung in Anwesenheit von Luft
5.3 Korrelation von Laborbewitterung und Außenmessung
5.4 Zusammenfassung
6 Charakterisierung gealterter Solarzellen
6.1 TOF-SIMS
6.2 UI-Kennlinien, EQE und Absorption
6.3 Elektrolumineszenzmessungen
6.4 Elektrische Simulation
6.5 LDI-TOF-MS
6.6 Zusammenfassung
7 Optimierung der Lebensdauer
7.1 Variation der Elektronentransportschicht in pin-Solarzellen
7.1.5.2 Rauigkeit
7.1.6 Zusammenfassung
7.2 Invertierte Struktur: pin vs. nip
7.3 Variation des Deckkontaktes
7.4 Variationen in der Lochtransportschicht
7.5 Zusammenfassung: Optimierung der Lebensdauer
8 Zusammenfassung und Ausblick
8.1 Zusammenfassung
8.2 Ausblick

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:27502
Date13 December 2013
CreatorsHermenau, Martin
ContributorsLeo, Karl, Brabec, Christoph, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds