L'objectif de l'analyse multifractale (introduite dans le cadre de la turbulence pleinement developpee) est de déterminer la dimension des ensembles de points où une fonction a une régularité hölderienne fixée. Cette information ne peut être calculée directement sur les signaux réels et une formule appelée formalisme multifractal a été introduite pour calculer ces dimensions à partir de quantités obtenues directement par traitement du signal. Elle n'est pas vraie en toute généralité et nous étudions dans cette thèse différentes situations dans lesquelles le formalisme multifractal n'est pas valide.<br />Des résultats de type " Baire " démontrent que le formalisme multifractal est vrai quasi-sûrement pour de petites valeurs de l'exposant de Hölder et faux pour les autres valeurs. Nous montrons que cela est dû à la présence de singularités oscillantes.<br />D'autre part le formalisme multifractal ne s'applique qu'aux fonctions continues. Nous montrons qu'il est possible de généraliser la formule, en passant d'un critère de régularité ponctuelle hölderienne à un critère plus faible, à des fonctions qui peuvent ne plus être continues.<br />Enfin nous étudions un cas particulier de phénomène oscillant en dimension 2 qui n'est pas caractérisé par les critères de régularité ponctuelle précédents. Nous proposons une méthode d'analyse de ce comportement à base d'un algorithme de traitement de l'image.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00002349 |
Date | 10 December 2002 |
Creators | Melot, Clothilde |
Publisher | Université Paris XII Val de Marne |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds