Return to search

THE ORBIT AND TRANSIT PROSPECTS FOR β PICTORIS b CONSTRAINED WITH ONE MILLIARCSECOND ASTROMETRY

A principal scientific goal of the Gemini Planet Imager (GPI) is obtaining milliarcsecond astrometry to constrain exoplanet orbits. However, astrometry of directly imaged exoplanets is subject to biases, systematic errors, and speckle noise. Here, we describe an analytical procedure to forward model the signal of an exoplanet that accounts for both the observing strategy (angular and spectral differential imaging) and the data reduction method (Karhunen-Loeve Image Projection algorithm). We use this forward model to measure the position of an exoplanet in a Bayesian framework employing Gaussian processes and Markov-chain Monte Carlo to account for correlated noise. In the case of GPI data on beta Pic b, this technique, which we call Bayesian KLIP-FM Astrometry (BKA), outperforms previous techniques and yields 1 sigma errors at or below the one milliarcsecond level. We validate BKA by fitting a Keplerian orbit to 12 GPI observations along with previous astrometry from other instruments. The statistical properties of the residuals confirm that BKA is accurate and correctly estimates astrometric errors. Our constraints on the orbit of beta Pic b firmly rule out the possibility of a transit of the planet at 10-sigma significance. However, we confirm that the Hill sphere of beta Pic b will transit, giving us a rare chance to probe the circumplanetary environment of a young, evolving exoplanet. We provide an ephemeris for photometric monitoring of the Hill sphere transit event, which will begin at the start of April in 2017 and finish at the end of January in 2018.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/624735
Date03 October 2016
CreatorsWang, Jason J., Graham, James R., Pueyo, Laurent, Kalas, Paul, Millar-Blanchaer, Maxwell A., Ruffio, Jean-Baptiste, Rosa, Robert J. De, Ammons, S. Mark, Arriaga, Pauline, Bailey, Vanessa P., Barman, Travis S., Bulger, Joanna, Burrows, Adam S., Cardwell, Andrew, Chen, Christine H., Chilcote, Jeffrey K., Cotten, Tara, Fitzgerald, Michael P., Follette, Katherine B., Doyon, René, Duchêne, Gaspard, Greenbaum, Alexandra Z., Hibon, Pascale, Hung, Li-Wei, Ingraham, Patrick, Konopacky, Quinn M., Larkin, James E., Macintosh, Bruce, Maire, Jérôme, Marchis, Franck, Marley, Mark S., Marois, Christian, Metchev, Stanimir, Nielsen, Eric L., Oppenheimer, Rebecca, Palmer, David W., Patel, Rahul, Patience, Jenny, Perrin, Marshall D., Poyneer, Lisa A., Rajan, Abhijith, Rameau, Julien, Rantakyrö, Fredrik T., Savransky, Dmitry, Sivaramakrishnan, Anand, Song, Inseok, Soummer, Remi, Thomas, Sandrine, Vasisht, Gautam, Vega, David, Wallace, J. Kent, Ward-Duong, Kimberly, Wiktorowicz, Sloane J., Wolff, Schuyler G.
ContributorsUniv Arizona, Lunar & Planetary Lab
PublisherIOP PUBLISHING LTD
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© 2016. The American Astronomical Society. All rights reserved.
Relationhttp://stacks.iop.org/1538-3881/152/i=4/a=97?key=crossref.43f4f9761b39650337dce49f68ff54ae

Page generated in 0.0025 seconds