Ho, Wing Ho. / On t.p. "beta" appears as the Greek letter. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 157-183). / Abstracts in English and Chinese. / Thesis committee --- p.ii / Statement --- p.iii / Acknowledgements --- p.iv / Abstract --- p.vi / 摘要 --- p.vii / Table of Contents --- p.viii / List of Tables --- p.xv / List of Figures --- p.xvii / List of Abbreviations --- p.xxiii / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter Chapter 2 --- Literature Review --- p.4 / Chapter 2.1 --- Vitamin A --- p.4 / Chapter 2.1.1 --- Genral and properties --- p.4 / Chapter 2.1.2 --- Biological importance of vitamin A --- p.6 / Chapter 2.1.3 --- Dietary source of vitamin A --- p.12 / Chapter 2.1.3.1 --- Plant-derived provitamin A and animal-derived vitamin A --- p.12 / Chapter 2.1.3.2 --- Dependence on the plant-derived provitamin A by the poor --- p.14 / Chapter 2.1.3.2.1 --- Plant-derived provitamin A --- p.14 / Chapter 2.1.3.2.1.1 --- General and properties --- p.14 / Chapter 2.1.3.2.1.2 --- Biosynthesis of provitamin A in plants --- p.17 / Chapter 2.1.3.2.1.2.1 --- Assembly of C40 backbone … --- p.17 / Chapter 2.1.3.2.1.2.2 --- Desaturation and cyclization --- p.26 / Chapter 2.1.3.2.1.2.3 --- Oxygenation --- p.29 / Chapter 2.1.3.2.1.2.4 --- Carotenogenic enzymes --- p.31 / Chapter 2.1.4 --- Metabolism of dietary vitamin A and provitamin A in human system --- p.35 / Chapter 2.1.4.1 --- Digestion and absorption --- p.35 / Chapter 2.1.4.2 --- Biocon version --- p.37 / Chapter 2.1.4.2.1 --- "Beta, beta '-carotene 15, 15'-monooxygenase (BCMO)" --- p.40 / Chapter 2.1.4.3 --- "Transport, uptake and storage" --- p.43 / Chapter 2.1.4.4 --- Provision or excretion --- p.46 / Chapter 2.2 --- Vitamin A deficiency (VAD) --- p.48 / Chapter 2.2.1 --- Green revolution --- p.48 / Chapter 2.2.2 --- Rice as the major staple food for feeding the poor --- p.49 / Chapter 2.2.3 --- Provitamin A content in processed rice seeds --- p.49 / Chapter 2.2.4 --- Symptoms of VAD --- p.51 / Chapter 2.2.5 --- Global prevalence of VAD --- p.53 / Chapter 2.3 --- Previous efforts for dealing with the deficiency --- p.55 / Chapter 2.3.1 --- The key for dealing with the deficiency --- p.55 / Chapter 2.3.2 --- Selective plant breeding --- p.55 / Chapter 2.3.3 --- Supplementation and post-harvesting fortification --- p.56 / Chapter 2.3.4 --- Bio-fortification by genetic engineering --- p.57 / Chapter 2.3.4.1 --- Advantages of genetic engineering --- p.57 / Chapter 2.3.4.1.1 --- Genetic engineering of non-cereal crops --- p.58 / Chapter 2.3.4.1.2 --- Genetic engineering of cereal crops --- p.62 / Chapter 2.3.4.1.2.1 --- Golden Rice 1 --- p.62 / Chapter 2.3.4.1.2.2 --- Golden Rice 2 --- p.64 / Chapter 2.4 --- Motivation for striking forward --- p.67 / Chapter 2.4.1 --- Recommended Dietary Amount of vitamin A --- p.67 / Chapter 2.4.2 --- Factors affecting the bioefficacy of provitamin A in human body --- p.68 / Chapter 2.4.2.1 --- Bioavailability --- p.68 / Chapter 2.4.2.2 --- Bioconvertibility --- p.69 / Chapter 2.4.2.3 --- Health and nutritional status --- p.71 / Chapter 2.4.3 --- Further improvement for dealing with the deficiency --- p.73 / Chapter 2.5 --- Hypothesis --- p.75 / Chapter Chapter 3 --- Materials and Methods --- p.78 / Chapter 3.1 --- Chemicals --- p.78 / Chapter 3.2 --- Bacterial strains --- p.78 / Chapter 3.3 --- Transient expression of BCMOs in plant system --- p.79 / Chapter 3.3.1 --- Choice of BCMOs --- p.79 / Chapter 3.3.2 --- Plasmids and genetic material --- p.79 / Chapter 3.3.3 --- Construction of chimeric genes for transient expression --- p.82 / Chapter 3.3.4 --- Microprojectile bombardment and GUS assay --- p.83 / Chapter 3.4 --- Construction of chimeric genes for rice co-transformation --- p.84 / Chapter 3.4.1 --- Choice of carotenogenic genes --- p.84 / Chapter 3.4.2 --- Choice of promoters --- p.84 / Chapter 3.4.3 --- Necessities and choice of transit peptide (TP) --- p.85 / Chapter 3.4.4 --- Arrangement of chimeric gene-cassettes --- p.86 / Chapter 3.4.5 --- Plasmids and genetic materials --- p.87 / Chapter 3.4.6 --- Construction of chimeric gene expressing PSY and PDS coordinately --- p.87 / Chapter 3.4.7 --- "Construction of chimeric gene expressing PSY, PDS and TP equipped CHBCMO coordinately" --- p.92 / Chapter 3.4.8 --- "Construction of chimeric gene expressing PSY, PDS and TP equipped ZEBCMO coordinately" --- p.98 / Chapter 3.4.9 --- Construction of chimeric gene expressing ZDS and LYCB coordinately --- p.103 / Chapter 3.4.10 --- Confirmation of sequence fidelity --- p.108 / Chapter 3.5 --- Rice co-transformation --- p.109 / Chapter 3.5.1 --- Plant materials --- p.109 / Chapter 3.5.2 --- Preparation of Agrobacterium tumefaciens --- p.109 / Chapter 3.5.3 --- Agrobacterium mediated co-transformation --- p.110 / Chapter 3.5.3.1 --- Callus induction from mature rice seeds --- p.110 / Chapter 3.5.3.2 --- Callus induction from immature rice seeds --- p.110 / Chapter 3.5.3.3 --- "Co-cultivation, selection and regeneration" --- p.111 / Chapter 3.6 --- Detection of transgene expression --- p.112 / Chapter 3.6.1 --- Detection at DNA level --- p.112 / Chapter 3.6.1.1 --- Genomic DNA extraction --- p.112 / Chapter 3.6.1.2 --- PCR screening --- p.112 / Chapter 3.6.1.3 --- Synthesis of DIG-labeled DNA probes --- p.114 / Chapter 3.6.1.4 --- Southern blot analysis --- p.115 / Chapter 3.6.2 --- Detection at RNA level --- p.116 / Chapter 3.6.2.1 --- Total RNA extraction --- p.116 / Chapter 3.6.2.2 --- Northern blot analysis --- p.116 / Chapter 3.6.3 --- Detection at product level --- p.117 / Chapter 3.6.3.1 --- Phenotypic identification --- p.117 / Chapter 3.6.3.2 --- HPLC analysis --- p.117 / Chapter 3.6.3.2.1 --- Extraction of total carotenoids and retinoids --- p.117 / Chapter 3.6.3.2.2 --- HPLC identification --- p.118 / Chapter 3.6.3.2.3 --- HPLC quantification --- p.118 / Chapter Chapter 4 --- Results --- p.119 / Chapter 4.1 --- Transient expression of BCMOs in plant system --- p.119 / Chapter 4.1.1 --- Construction of chimeric genes for transient expression --- p.119 / Chapter 4.1.2 --- Microprojectile bombardment and GUS assay --- p.120 / Chapter 4.2 --- Construction of chimeric genes for rice co-transformation --- p.121 / Chapter 4.3 --- Rice co-transformation --- p.123 / Chapter 4.3.1 --- Callus induction from mature and immature rice seeds --- p.123 / Chapter 4.3.2 --- "Co-cultivation, selection and regeneration" --- p.124 / Chapter 4.4 --- Detection of transgene expression --- p.126 / Chapter 4.4.1 --- Detection at DNA level --- p.126 / Chapter 4.4.1.1 --- PCR screening --- p.126 / Chapter 4.4.1.2 --- Southern blot analysis --- p.129 / Chapter 4.4.2 --- Detection at RNA level --- p.133 / Chapter 4.4.2.1 --- Northern blot analysis --- p.133 / Chapter 4.4.3 --- Detection at product level --- p.135 / Chapter 4.4.3.1 --- Phenotypic identification --- p.135 / Chapter 4.4.3.2 --- HPLC identification --- p.137 / Chapter 4.4.3.3 --- HPLC quantification --- p.147 / Chapter Chapter 5 --- Discussion --- p.150 / Chapter Chapter 6 --- Conclusion --- p.156 / References --- p.157
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326126 |
Date | January 2007 |
Contributors | Ho, Wing Ho., Chinese University of Hong Kong Graduate School. Division of Molecular Biotechnology. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xxv, 183 leaves : ill. (some col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0028 seconds