Return to search

Modeling Swelling Instabilities in Surface Confined Hydrogels

The buckling of a material subject to stress is a very common phenomenon observed in mechanics. However, the observed buckling of a surface confined hydrogel due to swelling is a unique manifestation of the buckling problem. The reason for buckling is the same in all cases; there is a certain magnitude of force that once exceeded, causes the material to deform itself into a buckling mode. Exactly what that buckling mode is as well as how much force is necessary to cause buckling depends on the material properties. Taking both a finite difference and analytical approach to the problem, it is desired to obtain relationships between the material properties and the predicted buckling modes. These relationships will make it possible for a hydrogel to be designed so that the predicted amount of buckling will occur.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-2768
Date01 July 2010
CreatorsShitta, Abiola
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0018 seconds