Return to search

Etude d'un problème pour le bilaplacien dans une famille d'ouverts du plan / Study of a problem for the biharmonic operator, in a open family of plan

L’objet de cette thèse est l’étude du problème Δ 2uω = fω avec les conditions aux limites Uω = Δ uω = 0, le second membre étant supposé dépendre continûment de ω dans L2(ω), où ω = {(r, θ); 0 < r < 1, 0 < θ < ω} , 0 < ω ≤ π, est une famille de secteurs tronqués du plan. Si ω < π on sait d’après Blum et Rannacher (1980) que la solution de ce problème uω se décompose au voisinage de l’origine en uω = u1,ω + u2,ω + u3,ω, (1) où u1,ω, u2,ω sont les parties singulières de uω et u3,ω la partie régulière. En effet, au voisinage de l’origine u1,ω (resp. u2,ω, u3,ω) est de régularité H1+πω−ǫ (resp. H2+πω−ǫ, H4) pour tout Q > 0, tandis que la solution uπ appartient, au moins au voisinage de l’origine, à l’espace H4(π), où π est le demi-disque supérieur de centre 0 et de rayon r = 1. On voit clairement une résolution de la singularité près de l’angle π dont la description est l’objectif principal de ce travail. Le résultat obtenu est que la décomposition (1) de uω est uniforme par rapport à ω, lorsque ω → π, pour les meilleures topologies possibles pour chacun des termes, et converge terme à terme vers le développement limité de uπ au voisinage de 0. / In this work, we study the family of problems Δ 2uω = fω with boundary conditionuω = Δ uω = 0. There, the second member is assumed to depend smoothly on ω in L2(ω), where ω = {(r, θ); 0 < r < 1, 0 < θ < ω} , 0 < ω ≤ π, is a family of truncated sectors of the plane. If ω < π it is known from Blum et Rannacher (1980) that the solution uω decomposes as uω = u1,ω + u2,ω + u3,ω, (1) where u1,ω, u2,ω are singular and u3,ω is regular. Indeed, near the origin, u1,ω(resp. u2,ω, u3,ω) is of regularity H1+πω−ǫ (resp. H2+πω−ǫ, H4) for every Q > 0, while the solution uπ is, in the neighborhood of the origin again, of regularity H4. One clearly sees a resolution of the singularity near the angle π whose descriptionis the main objective of this work. The obtained result is that there exists a decomposition (1) of uω which is uniform with respect to ω, when ω → π, with the best possible topologies for each term, and which term by term convergestowards the Taylor expansion of uπ near 0.

Identiferoai:union.ndltd.org:theses.fr/2016AIXM4362
Date01 December 2016
CreatorsTami, Abdelkader
ContributorsAix-Marseille, Université Ferhat Abbas (Sétif, Algérie), Tchamitchian, Philippe, Merouani, Boubakeur
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds