Dialogues are an interesting type of document, as they contain a speaker role feature not found in other types of texts. Previous work has included incorporating a speaker role dependency in text-generation, but little has been done in the realm of text classification. In this thesis, we incorporate speaker role dependency in a classification model by creating different speaker dependent word representations and simulating a conversation within neural networks. The results show a significant improvement in the performance of the binary classification of dialogues, with incorporated speaker role information. Further, by extracting attention weights from the model, we are given an insight into how the speaker’s role affects the interpretation of utterances, giving an intuitive explanation of our model. / Konversationer är en speciell typ av text, då den innehåller information om talare som inte hittas i andra typer av dokument. Tidigare arbeten har inkluderat en talares roll i generering av text, men lite har gjorts inom textklassificering. I det här arbetet, introducerar vi deltagarens roller till en klassifikationsmodell. Detta görs genom att skapa ordrepresentationer, som är beroende på deltagaren i konversationen, samt simulering av en konversation inom ett neuralt nätverk. Resultaten visar en signifikant förbättring av prestandan i binär klassificering av dialoger, med talares roll inkluderat. Vidare, genom utdragning av attentionvikterna, kan vi få en bättre överblick över hur en talares roll påverkar tolkningen av yttranden, vilket i sin tur ger en mer intuitiv förklaring av vår modell.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-271558 |
Date | January 2020 |
Creators | Stålhandske, Therese |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2020:6 |
Page generated in 0.0025 seconds