Return to search

Application des méthodes à noyaux sur graphes pour la prédiction des propriétés des molécules.

Cette thèse s'intéresse à l'application des méthodes à noyaux sur graphes pour la prédiction de propriétés moléculaires. Dans ce manuscrit, nous présentons un état de l'art des méthodes à noyaux sur graphes définies dans le cadre de la chémoinformatique et plus particulièrement les noyaux sur graphes basés sur les sacs de motifs. Dans ce cadre, nous proposons un nouveau noyau sur graphes basé sur un ensemble explicite de sous-arbres, appelés treelets, permettant d'encoder une grande partie de l'information structurelle acyclique des graphes moléculaires. Nous proposons également de combiner ce noyau avec des méthodes d'apprentissage à noyaux multiples afin d'extraire un ensemble de motifs pertinents. Cette contribution est ensuite étendue en incluant l'information cyclique encodée par deux représentations moléculaires définies par le graphe de cycles pertinents et l'hypergraphe de cycles pertinents. Le graphe des cycles pertinents permet d'encoder le système cyclique d'une molécule. L'hypergraphe de cycles pertinents correspond à une nouvelle représentation moléculaire permettant d'encoder à la fois le système cyclique d'une molécule ainsi que les relations d'adjacence entre les cycles et les parties acycliques. Nous proposons également deux noyaux sur graphes utilisant ces représentations. Enfin, la dernière partie vise à définir des noyaux sur graphes pour la chémoinformatique basés sur la distance d'édition. Un premier noyau est basé sur un opérateur de régularisation utilisant la distance d'édition entre graphes moléculaires. Le second noyau introduit la comparaison de treelets dissimilaires basée sur un algorithme de calcul de la distance d'édition entre treelets.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00933187
Date29 November 2013
CreatorsGaüzère, Benoit
PublisherUniversité de Caen
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds