Automated observation of avian vocal activity and species diversity can be a transformative tool for ornithologists, conservation biologists, and bird watchers to assist in long-term monitoring of critical environmental niches. Deep artificial neural networks have surpassed traditional classifiers in the field of visual recognition and acoustic event classification. Still, deep neural networks require expert knowledge to design, train, and test powerful models. With this constraint and the requirements of future applications in mind, an extensive research platform for automated avian activity monitoring was developed: BirdNET. The resulting benchmark system yields state-of-the-art scores across various acoustic domains and was used to develop expert tools and public demonstrators that can help to advance the democratization of scientific progress and future conservation efforts. / Die automatisierte Überwachung der Vogelstimmenaktivität und der Artenvielfalt kann ein revolutionäres Werkzeug für Ornithologen, Naturschützer und Vogelbeobachter sein, um bei der langfristigen Überwachung kritischer Umweltnischen zu helfen. Tiefe künstliche neuronale Netzwerke haben die traditionellen Klassifikatoren im Bereich der visuellen Erkennung und akustische Ereignisklassifizierung übertroffen. Dennoch erfordern tiefe neuronale Netze Expertenwissen, um leistungsstarke Modelle zu entwickeln, trainieren und testen. Mit dieser Einschränkung und unter Berücksichtigung der Anforderungen zukünftiger Anwendungen wurde eine umfangreiche Forschungsplattform zur automatisierten Überwachung der Vogelaktivität entwickelt: BirdNET. Das daraus resultierende Benchmark-System liefert state-of-the-art Ergebnisse in verschiedenen akustischen Bereichen und wurde verwendet, um Expertenwerkzeuge und öffentliche Demonstratoren zu entwickeln, die dazu beitragen können, die Demokratisierung des wissenschaftlichen Fortschritts und zukünftige Naturschutzbemühungen voranzutreiben.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36986 |
Date | 02 April 2020 |
Creators | Kahl, Stefan |
Contributors | Eibl, Maximilian, Eibl, Maximilian, Ritter, Marc, Klinck, Holger, Technische Universität Chemnitz |
Publisher | Universitätsverlag Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:ch1-qucosa-114835, qucosa:19908 |
Page generated in 0.0877 seconds