Surface engineering of tailored materials with adjustable characteristics in relation to biological environment, is one of the main prerequisites for biotechnological applications. In recent years, advanced surface coatings in the nanometer range have drawn big attention. A special category of this group are stimuli responsive polymers tethered by one functional end to the surface. When the surface grafting density is big enough, the polymer chains are forced to stretch away from the interface due to excluded volume effects, creating a so called polymer brush. Nano-scaled polymer brushes are advantageous due to their nanostructure, which can be comparable to biological species, and their collaborative response to external stimuli.
Moreover, the material design parameters such as chemistry, surface topography, charge, and surface wettability can be adjusted by using the appropriate polymer, or a combination of polymers with respect to the desired material performance. In case of binary polymer brushes, the materials' properties are switched between the properties of two constituent polymers. Besides, upon switching of external stimuli, biomodified binary polymer brushes can hide or expose biofunctionalities, on demand. Hence, they are classified as smart biomaterials' surface coatings.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-184411 |
Date | 17 November 2015 |
Creators | Psarra, Evmorfia |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Manfred Stamm, Prof. Dr. Manfred Stamm, Prof. Dr. Katrin Salchert |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0024 seconds