Return to search

Cell-surface glycan-lectin interactions for biomedical applications

Carbohydrate recognition is one of the most sophisticated recognition processes in biological
systems, mediating many important aspects of cell-cell recognition, such as inflammation, cell
differentiation, and metastasis. Consequently, lectin-glycan interactions have been intensively
studied in order to mimic their actions for potential bioanalytical and biomedical applications.
Galectins, a class of ß-galactoside-specific animal lectins, have been strongly implicated in
inflammation and cancer. Galectin-3 is involved in carbohydrate-mediated metastatic cell
heterotypic and homotypic adhesion via interaction with Thomsen-Friedenreich (TF) antigen on
cancer-associated MUC1. However, the precise mechanism by which galectin-3 recognizes TF
antigen is poorly understood. Our thermodynamic studies have shown that the presentation of the
carbohydrate ligand by MUC1-based peptide scaffolds can have a major impact on recognition,
and may facilitate the design of more potent and specific galectin-3 inhibitors that can be used as
novel chemical tools in dissecting the precise role of galectin-3 in cancer and inflammatory
diseases. Another lectin, odorranalectin (OL), has been recently identified from Odorrana grahami
skin secretions as the smallest cyclic peptide lectin, has a particular selectivity for L-fucose and
very low toxicity and immunogenicity, rendering OL an excellent candidate for drug delivery to
targeted sites, such as: (1) tumor-associated fucosylated antigens implicated in the pathogenesis
of several cancers, for overcoming the nonspecificity of most anticancer agents; (2) the olfactory epithelium of nasal mucosa for enhanced delivery of peptide-based drugs to the brain. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015.

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_31323
ContributorsRodriguez Benavente, Maria Carolina (author), Lepore, Salvatore D. (Thesis advisor), Cudic, Predrag (Thesis advisor), Charles E. Schmidt College of Science, Department of Chemistry and Biochemistry
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format198 p., Online Resource
RightsAll rights reserved by the source institution, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0016 seconds