Return to search

Nanophotonic control of Förster resonance energy transfer / Contrôle nanophotonique de transfert d'énergie par résonance de type Förster

Le transfert d'énergie par résonance de type Förster (FRET) permet de mesurer des distances nanométriques grâce à la dépendance critique de l'efficacité du transfert avec la séparation entre un donneur et un accepteur d'énergie. Le phénomène se produit quand le fluorophore donneur dans l'état excité transfère son énergie d'excitation à un accepteur à proximité de façon non-radiative avec une interaction dipôle-dipôle de champ proche. Les structures nanophotoniques sont capables de contrôler cette interaction grâce à la modification de la densité local d'états électromagnétiques (LDOS) d'un émetteur quantique. Nous avons démontré clairement l'exaltation du transfert d'énergie des paires FRET individuelles sous l'influence des nano-ouvertures percées en or et en aluminium et aussi à l'aide des designs plus complexes comme la `` antenna-in-box ". Notamment, nous avons dévoilé l'importance essentielle de l'orientation relative entre les dipôles sur les possibilités d'exaltation du transfert d'énergie par le biais des nanostructures. Également, nous avons utilisé des nanofils en argent pour démontrer un transfert d'énergie de long-distance entre deux nanoparticles séparées de plus d'un micromètre. Nos résultats éclairent le chemin de l'exploration du FRET, qui est largement utilisé dans les sciences du vivant et la biotechnologie. Les nanostructures optiques ouvrent de plus des perspectives d'applications innovantes pour la construction de biocapteurs, de sources de lumière ou dans l'industrie photovoltaïque. / The technique of Förster resonance energy transfer (FRET) determines the separation between two molecules at the nanometer scale, where molecular interactions can take place. The phenomenon requires a donor fluorophore transferring its energy in a non-radiative way, through a near-field dipole-dipole interaction, to an acceptor. Nanophotonics achieves accurate control over these interactions by modifying the local density of optical states (LDOS) of a single quantum emitter. We have clearly demonstrated enhanced energy transfer within single FRET pairs confined in single nanoapertures made of gold and also aluminum or in more complex structures like the antenna-in-box design. In particular, we have revealed the strong influence of the mutual dipole orientation on the FRET enhancement using nanostructures. Also, by means of silver nanowires, we have demonstrated a long-range plasmon-mediated fluorescence energy transfer between two nanoparticles separated by micrometer distance. Our results are clearing a new path to improve the energy transfer process widely used in life sciences and biotechnology. Optical nanostructures open up many potential applications for biosensors, light sources or photovoltaics.

Identiferoai:union.ndltd.org:theses.fr/2016AIXM4354
Date24 November 2016
CreatorsTorres Garcia, Juan de
ContributorsAix-Marseille, Wenger, Jérôme
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds