Return to search

Microélectrodes de nanotubes de carbone pour conversion d’énergie

Ce travail de thèse présente une nouvelle classe de microélectrodes de fibres de nanotubes de carbone (NT). Celles-ci sont réalisées par un filage en voie humide autorisant l’inclusion d’additifs au sein des fibres afin d’adapter leur formulation. Ainsi, le développement d’électrodes incluant la bilirubine oxydase (BOD) pour biopile enzymatique a permis d’obtenir un haut courant de réduction à l’aide d’un transfert d’électrons direct entre BOD et NT. Egalement, des actionneurs électromécaniques incluant une faible quantité de PVA réticulé sont proposés. De telles fibres génèrent une grande contrainte et présentent un temps de réponse court lorsqu’une faible tension leur est appliquée. La mobilité des NT les uns par rapport aux autres au sein de celles-ci a été réduite. Cette dernière est présente dans tout actionneur en NT et génère du fluage et une relaxation de contrainte de ces matériaux limitant ainsi leurs performances. Ces travaux ouvrent de nombreuses voies pour de nouvelles microtechnologies de conversion d’énergie, notamment appliquées au médical ou dans la micro-robotique. / This PhD work presents a new class of carbon nanotubes (NT) fibers microelectrodes. These fibers are produced by a wet spinning process which enables the inclusion of additives within the fibers in order to adapt their formulation. Thus, new microelectrodes for enzymatic biofuel cells that comprise bilirubin oxidase (BOD) have been realized in a one step process and enable a direct electron transfer process between the enzyme and NT at a high potential with a high reduction current. Furthermore, we also developed new NT microfibers including a small quantity of chemically crosslinked PVA for electrochemical actuators. They generate a large stress and a short response time when stimulated by a low voltage in an aqueous electrolyte. Moreover, the CNT mobility within these fibers is greatly reduced. The latter is present in any CNT actuator and induces creep and stress relaxation of these material prohibiting the possibility to obtain high actuating performances. The present results open routes towards the development of novel technologies for energy conversion potentially useful in micro-devices, biomedical applications and micro-robotics.

Identiferoai:union.ndltd.org:theses.fr/2013BOR14890
Date14 November 2013
CreatorsMichardière, Anne-Sophie
ContributorsBordeaux 1, Mano, Nicolas, Poulin, Philippe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.1618 seconds