Return to search

Wavelet Galerkin Schemes for Boundary Integral Equations - Implementation and Quadrature

In this paper we consider the fully discrete wavelet Galerkin scheme for the fast solution of boundary integral equations in three dimensions. It produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. We focus on implementational details of the scheme, in particular on numerical integration of relevant matrix coefficients. We illustrate the proposed algorithms by numerical results.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:18496
Date06 April 2006
CreatorsHarbrecht, Helmut, Schneider, Reinhold
PublisherTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint, info:eu-repo/semantics/preprint, doc-type:Text
SourcePreprintreihe des Chemnitzer SFB 393, 02-21
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds