The wavelet Galerkin scheme for the fast solution of boundary integral equations produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. In this paper we present an adaptive version of the scheme which preserves the super-convergence of the Galerkin method.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:18495 |
Date | 06 April 2006 |
Creators | Harbrecht, Helmut, Schneider, Reinhold |
Publisher | Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint, info:eu-repo/semantics/preprint, doc-type:Text |
Source | Preprintreihe des Chemnitzer SFB 393, 02-20 |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds