Return to search

Capacity Quantification of Two-Way Arching Reinforced Masonry Walls under Blast Loads

<p>The focus of this study is on evaluating the performance of nine, one-third scale, arching, reinforced masonry (RM) walls subjected to blast loads and three, one-third scale arching, RM walls subjected to out-of-plane static airbag loads. These RM walls were supported on four sides to enforce two-way arching allowing the ability to monitor individual response to varying levels of blast loads and standoff distances. The uniformity of the blast pressure and impulse were ensured by a specifically designed test enclosure, diminishing the wrap-around and clearing effects, allowing valuable data to be documented. The damage levels noted, ranged from Superficial to Blowout compared directly to the CSA S850-12 performance limits. The outcome of this experiment demonstrates the beneficial effect of two-way arching on the flexural behaviour of RM walls under impulsive loading. The use of two-way arching RM walls significantly reduces structural damage and increases out-of-plane resistance, which in turn enhances the overall structural integrity and building preservation. Further, when subjected to blast, two-way arching RM walls considerably reduces debris and their dispersal, thus increasing public safety and minimizing hazard levels. When using the experimental test data results to calibrate finite element models (FEM), more analytical data points can be obtained and therefore getting a larger range of scaled distances and trials. The validation of the LS-DYNA model can be used as an alternative to the costly experimental data, as the information collected concluded that the FEM gave damage patterns and failure modes that were comparable with experimental results. The test data collected provides a better understanding of RM wall response to blast loads and to the ongoing Masonry Blast Performance Database (MBPD) project at McMaster University. The generated MBPD will in turn contribute to masonry design clauses in the future editions of the recently introduced Canadian Standards CSA S850-12 “Design and Assessment of Buildings Subjected to Blast Loads”.</p> / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/14135
Date January 2014
CreatorsWybenga, Brent M.
ContributorsEl-Dakhakhni, Wael, Mekky, Waleed, Civil Engineering
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.0014 seconds