• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 36
  • 36
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PROGRESSIVE COLLAPSE OF FRAME BUILDINGS

Wood, Curtis James January 2018 (has links)
No description available.
2

Effect of new prestress loss estimation procedure on precast, pretensioned bridge girders

Garber, David Benjamin 30 June 2014 (has links)
The prestress loss estimation provision in the AASHTO LRFD Bridge Design Specifications was recalibrated in 2005 to be more accurate for "high-strength [conventional] concrete." Greater accuracy may imply less conservatism, the result of which may be flexural cracking of beams under service loads. Concern with a potential lack of conservatism and the degree of complexity of these recalibrated prestress loss estimation provisions prompted the investigation to be discussed in this dissertation. The primary objectives of this investigation were: (1) to assess the conservatism and accuracy of the current prestress loss provisions, (2) to identify the benefits and weaknesses of using the AASHTO LRFD 2004 and 2005 prestress loss provisions, and (3) to make recommendations to simplify the current provisions. These objectives were accomplished through (1) the fabrication, conditioning, and testing of 30 field-representative girders, (2) the assembly and analysis of a prestress loss database unmatched in size and diversity when compared with previously assembled databases, and (3) a parametric study investigating the design implications and sensitivity of the current loss provisions. Based on the database evaluation coupled with the experimental results, it was revealed that the use of the AASHTO LRFD 2005 prestress loss provisions resulted in underestimation of the prestress loss in nearly half of all cases. A loss estimation procedure was developed based on the AASHTO LRFD 2005 provisions to greatly simplify the procedure and provide a reasonable level of conservatism. / text
3

Structural performance of Texas U-beams at prestress transfer and under shear-critical loads

Hovell, Catherine Grace, 1983- 13 October 2011 (has links)
The Texas U-Beam standard designs were released in the 1990’s and have been used increasingly in bridges across the state since. While prototypes of the 54-in. deep prestressed concrete beam were built during the design phase, no full-scale load tests were performed. This study of the U-Beam had five goals: (i) determine the magnitude and location of stresses induced in reinforcing bars in the end region of the beam at prestress transfer, (ii) measure concrete curing temperatures in square and skewed end blocks, (iii) establish the vertical shear capacity of the standard section, (iv) evaluate interaction between behavior at prestress transfer and performance under shear-critical loads, and (v) identify design and detailing improvements and make recommendations. Eight full-scale Texas U54 prestressed concrete beams were fabricated to achieve these goals. Load testing of the first four of these beams revealed a critical weakness along the bottom flange-to-web interface of the beam. The weakness caused failures that occurred at loads well below the calculated shear capacity. Given the horizontal sliding observed, the failure mode was called horizontal shear. The next two beams were fabricated to test three modifications to the end-region design, two of which were deemed successful. The final two beam sections tested contained the recommended new standard reinforcement and concrete geometry. A method to evaluate the horizontal shear demand on and capacity of the bottom flange-to-web interface of prestressed concrete beams was developed. The calculations were formulated using the theories of beam bending and shear friction. This method was calibrated and verified using the U-Beam test data, a series of small-scale specimens, and results of shear tests in the literature. Stresses induced in reinforcing bars at prestress transfer met expectations set by existing codified equations. No modifications to the current U-Beam standard design are needed to manage these stresses. The induced stresses did not influence vertical shear behavior, and no interaction between the two is believed to exist for U-Beams. This dissertation contains the specifics of the beams tested and the data collected, and provides the details of recommended changes to the Texas U-Beam standard drawings. / text
4

Experimental and numerical analyses of angle bracket connections in cross laminated timber structures

Rezvani, S. Saeed 09 August 2021 (has links)
The invention of mass timber products, including cross laminated timber (CLT), over the past two decades has made tall wood building possible. In CLT structures, angle brackets are commonly used in wall-to-floor connections to transfer the shear in seismic and wind loads. In reality, these connections could experience loads in various directions, as well as multi-directional forces. This research consists of two parts: an experimental study carried out in Part 1, followed by a numerical program completed in Part 2. The research aims to investigate the performance of wall-to-floor CLT angle bracket connections under various loading situations. In Part 1 of the research, a two-phase experimental program consisting of 12 monotonic tests in the first phase, and 24 monotonic and 24 cyclic tests in the second phase was conducted to investigate the behaviour of wall-to-floor CLT angle bracket connections. Connections were assembled using two different sizes of steel angle brackets and four types of fasteners, under uplift, in-plane shear, and out-of-plane shear loads. The performance of the connections was evaluated in terms of strength, stiffness, ductility, energy dissipation capacity, and failure modes. Results show that small diameter fasteners are more desirable for wood-to-wood angle bracket connections in terms of failure modes, load-bearing capacity and stiffness. Specimens exhibited considerable ductile performance under both uplift and in-plane shear loads due to combinations of yielding of brackets and yielding or pull-out of screws. Connections loaded under out-of-plane tension may fail in the splitting of CLT panels. Fully-threaded screws led to higher strength, stiffness and energy dissipation capacity but less ductility compared to partially-threaded screws in angle bracket connections. In Part 2 of the research, a two-phase numerical program was carried out to assess the coupling effect of biaxial loading on the performance of CLT wall-to-floor angle bracket connections. In Phase I, a 3D finite element model of connections was developed using ABAQUS software and verified with the data from experimental tests carried out in Part 1 of the research. In Phase II of the numerical program, the verified model was used to simulate the performance of connections under three biaxial loads, i.e., shear and in-plane uplift, shear and out-of-plane tension, and shear and out-of-plane compression. The coupling effect on the performance of the connections was evaluated in terms of strength, stiffness, ductility, and failure modes under biaxial loads, and compared with the scenario where the connection was only loaded in shear. Results show that the application of biaxial loading may considerably decrease the shear performance of the connections. Additionally, the results confirm the analytical equation suggested by the European Technical Assessment to predict the resistance of angle bracket connections under biaxial loads. / Graduate / 2022-08-04
5

DEVELOPMENT OF CONTROLLED ROCKING REINFORCED MASONRY WALLS

Yassin, Ahmed January 2021 (has links)
The structural damage after the Christchurch earthquake (2011) led to extensively damaged facilities that did not collapse but did require demolition, representing more than 70% of the building stock in the central business district. These severe economic losses that result from conventional seismic design clearly show the importance of moving towards resilience-based design approaches of structures. For instance, special reinforced masonry shear walls (SRMWs), which are fixed-base walls, are typically designed to dissipate energy through the yielding of bonded reinforcement while special detailing is maintained to fulfill ductility requirements. This comes at the expense of accepting residual drifts and permanent damage in potential plastic hinge zones. This design process hinders the overall resilience of such walls because of the costs and time associated with the loss of operation and service shutdown. In controlled rocking systems, an elastic gap opening mechanism (i.e., rocking joint) replaces the typical yielding of the main reinforcement in conventional fixed-base walls, hence reducing wall lateral stiffness without excessive yielding damage. Consequently, controlled rocking wall systems with limited damage and self-centering behavior under the control of unbonded post-tensioning (PT) are considered favorable for modern resilient cities because of the costs associated with service shutdown (i.e., for structural repairs or replacement) are minimized. However, the difficulty of PT implementation during construction is challenging in practical masonry applications. In addition, PT losses due to PT yielding and early strength degradation of masonry reduce the self-centering ability of controlled rocking masonry walls with unbonded post-tensioning (PT-CRMWs). Such challenges demonstrate the importance of considering an alternative source of self-centering. In this regard, the current study initially evaluates the seismic performance of PT-CRMWs compared to SRMWs. Next, a new controlled rocking system for masonry walls is proposed, namely Energy Dissipation-Controlled Rocking Masonry Walls (ED-CRMWs), which are designed to self-center through vertical gravity loads only, without the use of PT tendons. To control the rocking response, supplemental energy dissipation (ED) devices are included. This proposed system is evaluated experimentally in two phases. In Phase I of the experimental program, the focus is to ensure that the intended behavior of ED-CRMWs is achieved. This is followed by design guidance, validated through collapse risk analysis of a series of 20 ED-CRMW archetypes. Finally, Phase II of the experimental program evaluates a more resilient ED-CRMW is evaluated, which incorporates a readily replaceable externally mounted flexural arm ED device. Design guidance is also provided for ED-CRMWs incorporating such devices. / Thesis / Doctor of Philosophy (PhD)
6

Shear assessment and strengthening of reinforced concrete T-beams with externally bonded CFRP sheets

Brindley, Monika January 2018 (has links)
Existing reinforced concrete bridges may be deemed inadequate to carry the ever-increasing traffic loads according to the current codes and standards before they reach the end of their design life. It may therefore be required to either strengthen or replace these structures, which can be costly and causes disruptions to the infrastructure. This work investigates experimentally the possibilities to extend the useful life of existing reinforced concrete slab-on-beam structures deficient in shear by means of structural strengthening with fibre-reinforced polymers (FRP). The experimental campaign involved mechanical testing of ten full-scale T-beam specimens, representative of typical existing slab-on-beam bridges. Two sizes of test specimen were used to investigate the effect of size on the ultimate shear capacity of the beams. The investigated shear-strengthening configurations included externally bonded carbon fibre reinforced polymer (CFRP) sheets in a U-wrap configuration with and without end-anchorage and deep embedded CFRP bars. Unstrengthened control specimens were also tested to provide baseline for comparison. The results from the experimental programme revealed that while the deep embedment strengthening solution provides an increase in shear capacity of up to 50%, the strengthening with CFRP U-wraps results in reduced capacity compared with the underlying control beam. This presents a major implication in terms of safe design predictions of shear capacity of reinforced concrete T-beams strengthened with CFRP sheets as this is the most commonly used shear-strengthening scheme in practice. The study also demonstrated that greater contribution from the externally bonded CFRP U-wraps can be achieved using end-anchorage systems, which delay the debonding of the CFRP. The applicability of current codes of standards and guidelines was studied as well as appropriateness of using advanced numerical methods for assessment of existing reinforced concrete structures. It was found that while the standards used for assessment greatly under-predict the shear capacity, the guidelines for FRP-strengthened beams either under- or over-predict the shear capacity of the tested beams. More accurate predictions are possible using advanced fracture mechanics-based methods for both the unstrengthened as well as the strengthened beams.
7

Structural Capacity of Light Gauge Steel Storage Rack Uprights

Koen, Damien Joseph January 2008 (has links)
Master of Engineering (Research) / This report investigates the down-aisle buckling load capacity of steel storage rack uprights. The effects of discrete torsional restraints provided by the frame bracing in the cross-aisle direction is considered in this report. Since current theoretical methods used to predict the buckling capacity of rack uprights appear to be over-conservative and complex, this research may provide engineers an alternative method of design using detailed finite element analysis. In this study, the results from experimental testing of upright frames with K-bracing are compared to finite element predictions of displacements and maximum axial loads. The finite element analysis is then used to determine the buckling loads on braced and un-braced uprights of various lengths. The upright capacities can then be compared with standard design methods which generally do not accurately take into account the torsional resistance that the cross-aisle frame bracing provides to the upright. The information contained in this report would be beneficial to engineers or manufacturers who are involved in the design of rack uprights or other discretely braced complex light gauge steel members subject to axial loads.
8

Structural Capacity of Light Gauge Steel Storage Rack Uprights

Koen, Damien Joseph January 2008 (has links)
Master of Engineering (Research) / This report investigates the down-aisle buckling load capacity of steel storage rack uprights. The effects of discrete torsional restraints provided by the frame bracing in the cross-aisle direction is considered in this report. Since current theoretical methods used to predict the buckling capacity of rack uprights appear to be over-conservative and complex, this research may provide engineers an alternative method of design using detailed finite element analysis. In this study, the results from experimental testing of upright frames with K-bracing are compared to finite element predictions of displacements and maximum axial loads. The finite element analysis is then used to determine the buckling loads on braced and un-braced uprights of various lengths. The upright capacities can then be compared with standard design methods which generally do not accurately take into account the torsional resistance that the cross-aisle frame bracing provides to the upright. The information contained in this report would be beneficial to engineers or manufacturers who are involved in the design of rack uprights or other discretely braced complex light gauge steel members subject to axial loads.
9

Interlaminar Deformation at a Hole in Laminated Composites: A Detailed Experimental Investigation Using Moire Interferometry

Mollenhauer, David Hilton 22 August 1997 (has links)
The deformation on cylindrical surfaces of holes in tensile loaded laminated composite specimens was measured using new moire interferometry techniques. These new techniques were developed and evaluated using a 7075-T6 aluminum control specimen. Grating replication techniques were developed for replicating high quality diffraction gratings onto the cylindrical surfaces of holes. Replicas of the cylindrical specimen gratings (undeformed and deformed) were fabricated onto circular steel sectors. Narrow angular regions of these sector gratings were directly evaluated in a moire interferometer. This moire interferometry approach eliminated potential sources of error associated with other moire interferometry approaches. Two composite tensile specimens, fabricated from IM7/5250-4 pre-preg with ply layups of [0₄/90₄]<sub>3s</sub> and [+30₂/-30₂/90₄]<sub>3s</sub>, were examined using the newly developed moire interferometry techniques. Circumferential and thickness direction displacement fringe patterns (each 3 degrees wide) were assembled into 90 degrees wide mosaics around the hole periphery for both composite specimens. Distributions of strain were calculated with high confidence on a sub-ply basis at select angular locations. Measured strain behavior was complex and displayed ply-by-ply trends. Large ply related variations in the circumferential strain were observed at certain angular locations around the periphery of the holes in both composites. Extremely large ply-by-ply variations of the shear strain were also documented in both composites. Peak values of shear strain approached 30 times the applied far-field axial strain. Post-loaded viscoelastic shearing strains were recorded that were associated with the regions of large load-induced shearing strains. Large ply-grouping related variations in the thickness direction strain were observed in the [+30₂/-30₂/90₄]<sub>3s</sub> specimen. An important large-scale trend was observed where the thickness direction strain tended to be more tensile near the outside faces of the laminate than near the mid-ply region. The measured strains were compared with the three-dimensional analysis technique known as Spline Variational Elastic Laminate Technology (SVELT), resulting in a very close match and corroborating the usefulness of SVELT. / Ph. D.
10

Analysis, Design, and Experimentation of Beam-Like Structures

Miglani, Jitish 23 March 2022 (has links)
Significant research is ongoing in the world to meet the needs of social and environmental crisis by harnessing wind and solar energy at high altitudes. One such approach is the use of an inflatable High Altitude Aerial Platform (HAAP). In the presented work, such periodically supported beam-like structures are analyzed using various mathematical models primarily modeling them as an equivalent beam using one-dimensional theories. The Euler-Bernoulli Theory (EBT) has been widely used for high aspect ratio beams, whereas the First Order Shear Deformation Theory (FSDT), or the Timoshenko beam theory, considers transverse shear effects and hence is superior in modeling low aspect ratio beams. First, an Isogeometric Analysis (IGA) is conducted using both FSDT and EBT to predict thermal buckling of periodically supported composite beams. Isogeometric analysis overcomes the limitations of the Gibbs phenomenon at discontinuities for a periodically supported beam using a higher order textit{k}-refinement. Next, an Integral Equation Approach (IEA) is implemented using EBT to obtain natural frequencies and buckling loads of periodically supported non-prismatic beams. Ill-conditioning errors were alleviated using admissible orthogonal Chebychev polynomials to obtain higher modes. We also present the prediction of the onset of flutter instability for metal plate and inflatable wing shaped foam test articles analyzed using finite element analysis (FEA). FEA updating based on modal testing and by conducting a geometrically nonlinear analysis resulted in a good agreement against the experiment tests. Furthermore, a nonlinear co-rotational large displacement/rotation FEA including the effects of the pressure as a follower forces was implemented to predict deformations of an inflatable structures. The developed FEA based tool namely Structural Analysis of Inflatables using FEA (SAIF) was compared with the experiments and available literature. It is concluded that the validity of the developed tool depends on the flexibility of the beam, which further depends upon the length of the beam and the bending rigidity of the beam. Inflatable structures analyzed with materials with high value of the Young's modulus and low to medium slenderness ratio tend to perform better against the experimental data. This is attributed to the presence of wrinkling and/or the Brazier effect (ovalling of the cross section) for flexible beams. The presented work has applications in programmable buckling, uncertainty quantification, and design of futuristic HAAP models to help face the upcoming environmental crises and meet the societal needs. / Doctor of Philosophy / In the future, developed countries are projected to face an increase in renewable energy demands due to environmental crises and increasing societal needs for energy due to urbanization. Wind energy, a renewable source, has received increasing attention. Wind farms require large land space and offshore wind energy harvesting is prone to unstable environments. Crosswind kite power is one of the promising and emerging fields where one can harvest energy from the wind farm inaccessible and apparently endless winds at high altitudes. In this dissertation, we present analysis and experiments on investigating complex structures, such as inflatable high altitude aerial platforms (HAAP) by using various mathematical models, primarily modeling them as an equivalent beam using one-dimensional theories. We investigate the effects of internal pressure on such structures, which unlike many other types of applied loads, follow the direction of the deflections. When supported on multiple supports, these structures are more efficient in terms of increased payload capacity due to a better distribution of loads, despite the increased weight penalty. To name a few, there are direct applications of periodic supports in design of bridges and railway sleepers. To avoid violent vibrations or failure, we also investigate the effect of multiple supports on the so-called natural frequency, vibration frequency under absence of applied loads, and buckling loads, instabilities under compression, of such beam-like structures. The presented work will aid in the design of futuristic HAAP models to help face the upcoming environmental crises and meet the energy demands of society due to urbanization.

Page generated in 0.1518 seconds