Recent advancements in pharmaceutical technology based on principles of nanotechnology, polymer chemistry, and biomedical engineering have resulted in the creation of novel drug delivery systems with the potential to revolutionize current strategies in cancer chemotherapy. In oncology, realization of significant improvements in therapeutic efficacy requires minimization of drug exposure to healthy tissues and concentration of the drug within the tumor. As such, encapsulation of chemotherapeutic agents inside nanoparticles capable of enhancing tumor-targeted drug delivery is a particularly promising innovation. Yet, initial investigations into the intratumoral fate of nanomedicines have suggested that they may be heterogeneously distributed and achieve limited access to cancer cells located distant from the tumor vasculature. As such, uncovering the determinants of nanoparticle transport at the intratumoral level is critical to the development of optimized delivery vehicles capable of fully exploiting the therapeutic potential of nanomedicines.
In this work, the chemotherapeutic agent, docetaxel (DTX), was incorporated into nano-sized, biocompatible PEG-b-PCL block copolymer micelles (BCMs). Encapsulation of DTX in micelles via chemical conjugation or physical entrapment resulted in a dramatic increase in drug solubility and customizable drug release rate. The use of multicellular tumor spheroids (MCTS) was established as a viable platform for assessing the efficacy and tumor tissue penetration of nanomedicines in vitro. A series of complementary assays was validated for analysis of DTX-loaded micelle (BCM+DTX) toxicity in monolayer and spheroid cultures relative to Taxotere®. Cells cultured as spheroids were less responsive to treatment relative to monolayer cultures due to mechanisms of drug resistance associated with structural and microenvironmental properties of the 3-D tissue. Computational, image-based methodologies were used to assess the spatial and temporal penetration of BCMs in spheroids and corresponding human tumor xenografts. Using this approach, the tumor penetration of micelles was found to be nanoparticle-size-, tumor tissue type- and time- dependent. Furthermore, spheroids were found to be a valuable platform for the prediction of trends in nanoparticle transport in vivo. Overall, the results reported herein serve to demonstrate important determinants of nanoparticle intratumoral transport and to establish computational in vitro and in vivo methodologies for the rational design and optimization of nanomedicines.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/65519 |
Date | 20 June 2014 |
Creators | Mikhail, Andrew |
Contributors | Allen, Christine |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0015 seconds