Return to search

Flow boiling heat transfer, pressure drop and dryout characteristics of low GWP refrigerants in a vertical mini-channel

Two-phase heat transfer in mini/micro-channels is capable of meeting the high cooling demands of modern high heat flux applications. The phase change process ensures better temperature uniformity and control for local hot spots. Furthermore, these compact channels could be helpful in reducing the required charge and material inventories.Environmental concerns—mainly ozone depletion and global warming—have instigated a search for new alternatives in refrigeration industry. While new compounds are being developed to address stringent legislative demands, natural alternatives are also coming into prominence. A limited number of investigators have reported on thermal performance of such alternatives. The current study is therefore focused on saturated flow boiling heat transfer, pressure drop and dryout characteristics for three low global warming potential (GWP) refrigerants (R152a, R600a and R1234yf) in a vertical mini-channel.In this study experiments were carried out by uniformly heating a test section (stainless steel tube with 1.60 mm inside diameter and 245 mm heated length) at 27 and 32 oC saturation temperature with 50-500 kg/m2s mass velocities. The effects of various parameters of interest (like heat flux, mass flux, system pressure, vapor quality, operating media) on flow boiling heat transfer, frictional pressure drop and dryout characteristics were recorded. R134a, which has been widely used in several applications, is utilized as a reference case for comparison of thermal performance in this study.Experimental results for saturated boiling heat transfer showed strong influence of heat flux and system pressure with insignificant contributions from mass flux and vapor quality. Two phase frictional pressure drop increased with mass flux, vapor quality and with reduced operating pressure. The dryout heat flux remained unaffected with variation in saturation temperature, critical vapor quality in most cases was about 85%. The experimental results (boiling heat transfer, two-phase pressure drop and dryout heat flux) were compared with well-known macro and micro-scale correlations from the literature. / <p>QC 20141124</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-156056
Date January 2014
CreatorsAnwar, Zahid
PublisherKTH, Tillämpad termodynamik och kylteknik, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-REFR, 1102-0245 ; 14:03

Page generated in 0.0019 seconds