Wine companies face two important challenges in their supply chain: the international shipping temperatures and their effect on the perceived quality of the wine and the optimization of the bottling schedule. The wine maker takes special care in producing the best quality product, which is then shipped to the importer/distributor or consumer, generally in non-refrigerated containers at the mercy of the prevailing environmental conditions. The contributions of this work is that it is the first to measure, for a significant period of time, the temperatures along the international wine supply chain and to link them to the specific supply chain processes. This is also the first work that analyzes the effect of shipping temperature on the perceived quality of the product by those who make the purchase decision for importers, restaurants and supermarkets. Results indicate that the wine is very likely to have been exposed to extreme temperatures during shipping. For white wines, tasters are able to detect differences in wines which have been exposed to shipping temperatures and show a preference towards them. For red wines, they are unable to detect differences.
Our contribution to the second challenge was the development of a model that produces solutions for the wine bottling lot sizing and scheduling problem with sequence dependent setup times, in an adequate time-frame, which can be implemented by large wineries. We have developed a model and algorithm that produces fast, good and robust solutions for the winery lot sizing and scheduling problem with sequence dependent setup times. We implemented an effective decomposition algorithm that uses the structure of the problem, that can be applied to other families of sequence dependent scheduling and lot sizing problem. Results indicate that the model achieves reductions of 30\% in the total plan costs.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/52213 |
Date | 27 August 2014 |
Creators | Mac Cawley, Alejandro F. |
Contributors | Bartholdi, John J., III |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0025 seconds