Return to search

A Parameterized Approach to Estimating Wave Attenuation from Living Shorelines

Living shorelines and other nature-based solutions have become more widely accepted as a cost-effective, multi-functional, and sustainable approach to coastal resilience. However, in spite of growing stakeholder support, a planning-level understanding of the hydrodynamic impact of living shorelines is not well-developed. Not only do these features vary in size, shape, and structural characteristics, but the wave environment in which they exist can be quiescent or extreme. The work presented in this paper explores the hydrodynamic effects of living shoreline features in such a way that can be generalized across a range of varying physical environments. In a series of Simulation WAves Nearshore (SWAN) simulations, we investigate the effect of wave period, wave height, bed slope, living shoreline feature length in the cross-shore direction, and feature friction coefficient on wave attenuation. Results showed that higher wave period, higher wave height, milder slopes, longer feature lengths, and higher feature roughness largely correlated with higher wave attenuation. However, only on mild slopes did additional feature lengths result in appreciable additional attenuation. Characteristic lengths were thus computed to better illustrate the cost-effectiveness of additional feature lengths given a particular wave environment. These characteristic lengths provide one way to evaluate the hydraulic efficacy of proposed living shoreline projects. In this way, regardless of the particularities of individual project sites, we aim to help planners screen potential living shoreline projects before pursuing more detailed, costly analyses. / Master of Science / Living shorelines and other nature-based solutions have become more widely accepted as a cost-effective, multi-functional, and sustainable approach to coastal resilience. However, in spite of growing stakeholder support, a planning-level understanding of the hydrodynamic impact of living shorelines is not well-developed. Not only do these features vary in size, shape, and structural characteristics, but the wave environment in which they exist can be quiescent or extreme. The work presented in this paper explores the hydrodynamic effects of living shoreline features in such a way that can be generalized across a range of varying physical environments. In a series of Simulation WAves Nearshore (SWAN) simulations, we investigate the effect of wave period, wave height, bed slope, living shoreline feature length in the cross-shore direction, and feature friction coefficient on wave attenuation. Results showed that higher wave period, higher wave height, milder slopes, longer feature lengths, and higher feature roughness largely correlated with higher wave attenuation. However, only on mild slopes did additional feature lengths result in appreciable additional attenuation. Characteristic lengths were thus computed to better illustrate the cost-effectiveness of additional feature lengths given a particular wave environment. These characteristic lengths provide one way to evaluate the hydraulic efficacy of proposed living shoreline projects. In this way, regardless of the particularities of individual project sites, we aim to help planners screen potential living shoreline projects before pursuing more detailed, costly analyses.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/104636
Date12 August 2021
CreatorsMosuela, Kristine Angela
ContributorsCivil and Environmental Engineering, Irish, Jennifer L., Ferreira, Celso, Stark, Nina
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds