[ES] El daño cerebral es la mayor causa de discapacidad en la etapa adulta, particularmente afectando a la población anciana. Independientemente de la causa, los diferentes tipos de daño cerebral comparten eventos fisiopatológicos similares. Hasta ahora, la mayoría de los estudios se enfocaron en estudiar las respuestas inmediatas tras la lesión, mientras que los mecanismos que subyacen bajo los procesos de plasticidad y regeneración cortical aún son desconocidos. Neuregulina 1 (Nrg1) es una proteína esencial en el desarrollo de los circuitos corticales que se ha asociado a diferentes trastornos psiquiátricos, como la esquizofrenia. En las últimas décadas, varios trabajos proponen a Nrg1 como un factor neuroprotector emergente en el ámbito de lesión. No obstante, la mayoría de las investigaciones se centran en estudiar la respuesta temprana de la forma soluble de Nrg1 tras el daño, mediada por la activación de los receptores ErbB, la cual no recapitula totalmente la compleja señalización de Nrg1. De este modo, nuestro laboratorio ha demostrado previamente que la señalización intracelular de Nrg1 se activa en situaciones de hipoxia, promoviendo la supervivencia neuronal tras ictus.
El principal objetivo de esta tesis es estudiar el papel de la señalización de Nrg1 en la regeneración y plasticidad cortical tras daño cerebral. Para ello, hemos desarrollado nuevos modelos para 1) ofrecer una metodología que permita estudiar la regeneración axonal in vitro e in vivo y 2) específicamente estudiar el papel de la señalización intracelular de Nrg1 en el ámbito de daño cortical.
Primero, desarrollamos un nuevo modelo in vitro de lesión axonal en cultivos de neuronas corticales, utilizando técnicas de electroporación para marcar un número limitado de neuronas, combinado con una posterior lesión física basada en una transección mecánica de los axones. En este modelo, también se realizaron estudios de ganancia y pérdida de función para comprender el papel de Nrg1 en el crecimiento axonal. Nuestros resultados mostraron que Nrg1, y específicamente la activación de su vía intracelular, potencia el crecimiento axonal tras daño.
Posteriormente, diseñamos una metodología novedosa en ratones para estudiar la regeneración cortical, combinando técnicas de trazado de conexiones cortico-corticales con una lesión focal y mecánica en la corteza primaria motora. Se realizó una extensa caracterización funcional empleando diversas pruebas comportamentales específicas para detectar déficits motores en lesiones unilaterales como la ofrecida en este modelo. Gracias al procesamiento del tejido cerebral en series flotantes, se combinaron diferentes tinciones para realizar reconstrucciones 3D del cerebro y, así, ofrecer un estudio completo incluyendo medidas volumétricas y un análisis de diferentes poblaciones celulares y estructuras subcelulares. Como ejemplo, se investigó la correlación entre la eliminación de redes perineuronales y la activación de células microgliales en la zona adyacente a la lesión.
Esta metodología de lesión cortical in vivo se utilizó en innovadores modelos genéticos de ratón en esta tesis para entender el papel de Nrg1 tras daño cortical. Así, se eliminó la expresión del gen de Nrg1 en ratonas jóvenes y maduras previamente a la lesión, observando que la ausencia de Nrg1 promueve la respuesta neuroinflamatoria y una preservación axonal limitada, conllevando una menor recuperación motora espontánea tras la lesión.
Finalmente, para ofrecer una visión mecanicista del papel de la señalización intracelular de Nrg1, su dominio intracelular se expresó específicamente en neuronas corticales, observando que la activación de esta vía de señalización reduce la respuesta inflamatoria tras lesión cortical. En conclusión, estos resultados señalan que Nrg1, y específicamente la activación de su vía intracelular, podría ser una diana molecular prometedora en el contexto de neuroprotección, regeneración y recuperación cortical tras daño cerebral. / [CA] El dany cerebral és la major causa de discapacitat en l'etapa adulta, particularment en la població anciana. Independentment de la causa, els diferents tipus de dany cerebral comparteixen esdeveniments fisiopatològics similars. Fins ara, la majoria dels estudis es van enfocar a estudiar les respostes immediates després de la lesió, mentre que els mecanismes que subjauen sota els processos de plasticitat i regeneració cortical encara són desconeguts. Neuregulina 1 (Nrg1) és una proteïna essencial en el desenvolupament dels circuits corticals que s'ha associat a diferents trastorns psiquiàtrics, com l'esquizofrènia. En les últimes dècades, diversos treballs proposen a Nrg1 com un factor neuroprotector emergent en l'àmbit de lesió. No obstant això, la majoria de les investigacions se centren en estudiar la resposta primerenca de la forma soluble de Nrg1 després del mal, mediada per l'activació dels receptors ErbB, la qual no recapitula totalment la complexa senyalització de Nrg1. D'aquesta manera, el nostre laboratori ha demostrat prèviament que la senyalització intracel·lular de Nrg1 s'activa en situacions d'hipòxia, promovent la supervivència neuronal després de l'ictus.
El principal objectiu d'aquesta tesi és estudiar el paper de la senyalització de Nrg1 en la regeneració i plasticitat cortical després de dany cerebral. Per a això, hem desenvolupat nous models per a 1) oferir una metodologia que permeta estudiar la regeneració axonal in vitro i in vivo i 2) específicament estudiar el paper de la senyalització intracel·lular de *Nrg1 en l'àmbit de mal cortical.
Primer, desenvolupem un nou model in vitro de lesió axonal en cultius de neurones corticals, utilitzant tècniques de electroporació per a marcar un nombre limitat de neurones, combinat amb una posterior lesió física basada en una secció mecànica dels axons. En aquest model, també es van realitzar estudis de guany i pèrdua de funció per a comprendre el paper de Nrg1 en el creixement axonal. Aquests resultats van mostrar que Nrg1, i específicament l'activació de la seua via intracel·lular, potència el creixement axonal després de mal.
Posteriorment, dissenyem una metodologia nova en ratolins per a estudiar la regeneració cortical, combinant tècniques de traçat de connexions cortico-corticals amb una lesió focal i mecànica en l'escorça primària motora. Es va realitzar una extensa caracterització funcional emprant diverses proves comportamentals específiques per a detectar dèficits motors en lesions unilaterals com l'oferida en aquest model. Gràcies al processament del teixit cerebral en sèries flotants, es van combinar diferents tincions per a realitzar reconstruccions 3D del cervell i, així, oferir un estudi complet incloent mesures volumètriques i una anàlisi de diferents poblacions cel·lulars i estructures subcel·lulars. Com a exemple, es va investigar la correlació entre l'eliminació de xarxes perineuronals i l'activació de cèl·lules microglials en la zona adjacent a la lesió.
Aquesta metodologia de lesió cortical in vivo es va utilitzar en innovadors models genètics de ratolí per a entendre el paper de Nrg1 després de mal cortical. Es va eliminar l'expressió del gen de Nrg1 en ratolins joves i madurs prèviament a la lesió, observant que l'absència de Nrg1 promou la resposta neuroinflamatoria i una preservació axonal limitada, el que comporta una menor recuperació motora espontània després de la lesió.
Finalment, per a oferir una visió mecanicista del paper de la senyalització intracel·lular de Nrg1, el seu domini intracel·lular es va expressar específicament en neurones corticals, observant que l'activació d'aquesta via de senyalització redueix la resposta inflamatòria després de lesió cortical. En conclusió, aquests resultats assenyalen que la senyalització de Nrg1, i específicament l'activació de la seua via intracel·lular, podria ser una diana molecular prometedora en el context de neuroprotecció, regeneració i recuperació cortical després de dany cerebral. / [EN] Brain damage is the leading cause of disability in adults, particularly in the elderly population. Regardless of the cause, different types of brain injury share similar physiopathological events. Most studies to date have focused on the immediate post-injury response, whereas less is known about cortical regeneration and plasticity after brain injury. Neuregulin 1 (Nrg1) is essential for the development of cortical circuits and has been implicated in several psychiatric disorders, such as schizophrenia. In the last decades, several works proposed Nrg1 signaling as an emergent modulator of neuroprotection upon damage. However, most research has focused on the early response of Nrg1 diffusible isoforms mediated by ErbB receptor activation after injury, which does not fully recapitulate the complexity of Nrg1 signaling. In this context, we have previously shown that Nrg1 intracellular signaling is activated under hypoxic conditions and promotes neuronal survival after cortical stroke.
The overall goal of this dissertation is to investigate the role of Nrg1 signaling in cortical regeneration and plasticity after cortical damage. To achieve this goal, we developed novel, refined models to 1) provide new methodological approaches to study axonal regeneration in vitro and in vivo and 2) specifically target Nrg1 signaling and particularly investigate the role of Nrg1 intracellular pathway upon cortical injury.
First, we developed a novel in vitro model of axonal injury in cortical neuron cultures. Specifically, we performed sparse labeling of the cultures by electroporation techniques and induced physical injury by mechanical transection of the axons. In this model, we also performed gain- and loss-of-function approaches to investigate the role of Nrg1 in axonal outgrowth. Our results showed that Nrg1, and specifically the activation of its intracellular signaling, potentiates axonal outgrowth upon injury.
Second, we developed a novel methodology in mice that combines cortico-cortical projection tracing with focal mechanically controlled cortical damage (CCD) to study cortical regeneration. We performed extensive functional characterization of the model and provided meaningful behavioral tasks to detect motor impairment in unilateral focal injuries. Since tissue processing is performed in serial floating sections, we combined different immunolabeling and 3D brain reconstruction to evaluate stereological measurements and analysis of axonal projections and different cell populations. As a biological result, we showed a correlation between perineuronal nets (PNNs) disruption and microglial activation in the perilesional region.
Later, we applied the CCD methodology in novel genetic mouse models to better understand the role of Nrg1 signaling in vivo after cortical injury. We induced acute Nrg1 deletion prior to injury in young and aged mice and observed that Nrg1 deletion promoted neuroinflammatory response and limited axonal preservation and spontaneous motor recovery after cortical injury. Finally, we specifically expressed Nrg1-ICD to provide a mechanistic perspective and observed that activation of this intracellular pathway decreased the neuroinflammatory response. Collectively, our results shed light on Nrg1 signaling, and specifically the activation of its intracellular pathway, as a promising molecular target in neuroprotection, cortical regeneration, and recovery after brain injury. / González Manteiga, A. (2023). Understanding the Role of Nrg1 Signaling Upon Brain Damage: Novel Models of Cortical Regeneration [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/200224
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/200224 |
Date | 27 November 2023 |
Creators | González Manteiga, Ana |
Contributors | Fazzari, Pietro, Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia, Ministerio de Economía, Industria y Competitividad, Generalitat Valenciana |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds