Return to search

The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal

Gyrencephaly (the folding of the surface of the neocortex) is a mammalian-specific trait present in almost all mammalian orders. Despite the widespread appearance of the trait, little is known about the mechanism of its genesis or its adaptive significance. Still, most of the hypotheses proposed concentrated on the pattern of connectivity of mature neurons as main components of gyri formation. Recent work on embryonic neurogenesis in several species of mammals revealed different progenitor and stem cells and their neurogenic potential as having important roles in the process of gyrification. Studies in the field of comparative neurogenesis revealed that gyrencephaly is an evolutionarily labile trait, and that some species underwent a secondary loss of a convoluted brain surface and thus reverted to a more ancient form, a less folded brain surface (lissencephaly). This phenotypic reversion provides an excellent system for understanding the phenomenon of secondary loss. In this review, we will outline the theory behind secondary loss and, as specific examples, present species that have undergone this transition with respect to neocortical folding. We will also discuss different possible pathways for obtaining (or losing) gyri. Finally, we will explore the potential adaptive consequence of gyrencephaly relative to lissencephaly and vice versa.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-178648
Date27 October 2015
CreatorsHuttner, Wieland B., Kelava, Iva, Lewitus, Eric
ContributorsFrontiers Media,
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:article
Formatapplication/pdf
SourceFrontiers in neuroanatomy 2013 Volume 7, Article number 16, ISSN 1662-5129

Page generated in 0.0023 seconds