• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal

Huttner, Wieland B., Kelava, Iva, Lewitus, Eric 27 October 2015 (has links) (PDF)
Gyrencephaly (the folding of the surface of the neocortex) is a mammalian-specific trait present in almost all mammalian orders. Despite the widespread appearance of the trait, little is known about the mechanism of its genesis or its adaptive significance. Still, most of the hypotheses proposed concentrated on the pattern of connectivity of mature neurons as main components of gyri formation. Recent work on embryonic neurogenesis in several species of mammals revealed different progenitor and stem cells and their neurogenic potential as having important roles in the process of gyrification. Studies in the field of comparative neurogenesis revealed that gyrencephaly is an evolutionarily labile trait, and that some species underwent a secondary loss of a convoluted brain surface and thus reverted to a more ancient form, a less folded brain surface (lissencephaly). This phenotypic reversion provides an excellent system for understanding the phenomenon of secondary loss. In this review, we will outline the theory behind secondary loss and, as specific examples, present species that have undergone this transition with respect to neocortical folding. We will also discuss different possible pathways for obtaining (or losing) gyri. Finally, we will explore the potential adaptive consequence of gyrencephaly relative to lissencephaly and vice versa.
2

The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal

Huttner, Wieland B., Kelava, Iva, Lewitus, Eric 27 October 2015 (has links)
Gyrencephaly (the folding of the surface of the neocortex) is a mammalian-specific trait present in almost all mammalian orders. Despite the widespread appearance of the trait, little is known about the mechanism of its genesis or its adaptive significance. Still, most of the hypotheses proposed concentrated on the pattern of connectivity of mature neurons as main components of gyri formation. Recent work on embryonic neurogenesis in several species of mammals revealed different progenitor and stem cells and their neurogenic potential as having important roles in the process of gyrification. Studies in the field of comparative neurogenesis revealed that gyrencephaly is an evolutionarily labile trait, and that some species underwent a secondary loss of a convoluted brain surface and thus reverted to a more ancient form, a less folded brain surface (lissencephaly). This phenotypic reversion provides an excellent system for understanding the phenomenon of secondary loss. In this review, we will outline the theory behind secondary loss and, as specific examples, present species that have undergone this transition with respect to neocortical folding. We will also discuss different possible pathways for obtaining (or losing) gyri. Finally, we will explore the potential adaptive consequence of gyrencephaly relative to lissencephaly and vice versa.
3

Vliv redukce aminokyselinové abecedy na strukturu a funkci defosfokoenzym A kinázy / Effect of amino acid alphabet reduction on structure and function of dephosphocoenzyme A kinase

Makarov, Mikhail January 2021 (has links)
It is well-known that the large diversity of protein functions and structures derives from the broad spectrum of physicochemical properties of the 20 canonical amino acids that constitute modern proteins. According to the generally accepted coevolution theory of the genetic code, evolution of protein structures and functions was continuously associated with enrichment of the genetic code, with aromatic amino acids being considered the latest addition to the genetic code to increase structural stability of proteins and diversification of their catalytic functions. The main objective of this master thesis was to test whether enzymatic catalysis could precede the appearance of aromatic amino acids in the standard genetic code. For that purpose, the effect of amino acid alphabet reduction on structure and function of dephosphocoenzyme A kinase (DPCK) was studied. Dephosphocoenzyme A kinase catalyses the final step in the biosynthesis of coenzyme A, a very conserved cofactor. Two aromatic amino acid-lacking mutants of DPCK from a thermophilic bacterium, Aquifex aeolicus, were designed by substituting aromatic amino acid residues by (i) leucines and (ii) various non-aromatic amino acids to best preserve the structural stability of the protein. Wild type protein and the two mutants were cloned and...

Page generated in 0.1157 seconds