Two dimensional experimental and numerical modeling of wave transmission and wave-induced current over detached submerged breakwaters has been carried out in this thesis. Two preliminary 3D and a comprehensive series of 2D laboratory experiments have been conducted in the wave basin and 3 m wide wave flume. The preliminary 3D experimental tests qualitatively investigated the flow behavior behind a submerged breakwater and confirmed the validity of the 2D tests. The 2D laboratory tests examined wave breaking, reflection, transmission as well as wave-induced set-up and currents over submerged breakwater/reef structures. Different approaches to experimental data processing are examined in producing reliable application of the 2D laboratory measurements. Sensitivity of wave transmission coefficient, wave-induced set-up and wave-induced discharge over submerged breakwaters to other dimensional and non-dimensional parameters are comprehensively investigated. Previously published analytical/experimental studies for predicting/calculating wave breaking, wave transmission, wave-induced set-up and current are discussed and compared with the present experimental results. Improved equations/models are presented. Numerical modeling of the hydrodynamic effects of wave breaking and flow over a submerged breakwater is investigated using Delft3D. The capability of the Delft3D numerical model to simulate wave height transformation and wave-induced current over submerged breakwaters is provided. Four different approaches using combinations/options within the two main modules of Delft3D (SWAN and FLOW) are tested in the numerical simulations and the results are compared to the laboratory experimental data. Guidance is provided as to the most appropriate application of WAVE/FLOW/ROLLER modules in Delft3D for the reliable prediction of discharge and wave height over different width submerged breakwaters.
Identifer | oai:union.ndltd.org:ADTP/242784 |
Date | January 2006 |
Creators | Tajziehchi, Mojtaba, Civil & Environmental Engineering, Faculty of Engineering, UNSW |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0018 seconds