Neste trabalho, definimos a obstrução local de Euler de um espaço analítico complexo singular (X, \'x IND.0\'), denotada por Eu(X, \'x IND.0\'), e a obstrução local de Euler de uma função holomorfa f definida neste espaço, com uma singularidade isolada em \'x IND. 0\', denotada por \'Eu IND. f\' (X, \'x IND.0\'); e apresentamos duas fórmulas para seus respectivos cálculos. Em seguida, através de uma abordagem geométrica, determinamos as relações entre \'Eu IND. f\' (X,\'x IND.0\') e algumas generalizações do número de Milnor para funções em espaços singulares / In this work we define the local Euler obstruction of a complex analytic singularity (X, \'x IND.0\'), denoted Eu(X, \'x IND.0\'), and the local Euler obstruction of a holomorphic function f defined on this space, with an isolated singularity at \'x IND. 0\', denoted \'Eu IND. f\' (X, \'x IND.0\'); and we present two formulas for their respective calculations. Next, using a geometric approach, we determine the relations between \'Eu IND.f\' (X, \'x IND.0\') and several generalizations of the Milnor number for functions on singular spaces
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-14092007-101056 |
Date | 27 June 2007 |
Creators | Menegon Neto, Aurelio |
Contributors | Santos, Raimundo Nonato Araújo dos |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds