Neste trabalho, propomos um método de pontos interiores para minimização com restrições lineares de grande porte. Este método explora a linearidade das restrições, partindo de um ponto viável e preservando a viabilidade dos iterandos. Apresentamos os principais resultados de convergência global, além de uma descrição rica em detalhes de uma implementação prática de todos os passos do método. Para atestar a implementação do método, exibimos uma ampla experimentação numérica, e uma análise comparativa com métodos bem difundidos na comunidade de otimização contínua. / In this work, we propose an interior-point method for large-scale linearly constrained optimization. This method explores the linearity of the constraints, starting from a feasible point and preserving the feasibility of the iterates. We present the main global convergence results, together with a rich description of the implementation details of all the steps of the method. To validate the implementation of the method, we present a wide set of numerical experiments and a comparative analysis with well known softwares of the continuous optimization community.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-11072014-084756 |
Date | 16 April 2014 |
Creators | John Lenon Cardoso Gardenghi |
Contributors | Ernesto Julian Goldberg Birgin, José Mario Martinez Perez, Sandra Augusta Santos |
Publisher | Universidade de São Paulo, Ciência da Computação, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds